An optical disk may not have a TOC (e.g. for blank media) and userland
software may legitimately try to use CDIOREADTOCHEADER to find out about
the TOC.
Silence from: scsi@
MFC after: 10 days
specific.
The Atheros HAL and FreeBSD HAL share the same capabilities up
until HAL_CAP_11D, where things begin to diverge.
I'll look at tidying these up soon.
Obtained from: Atheros
* Add Howl (ar9130) to the list of chips that have DFS/BB/MAC hangs
* Don't treat unknown BB hangs as fatal; ath9k/Atheros HAL don't
treat it as such.
* Add HAL_DEBUG_DFS to the debug fields in ath_hal/ah_debug.h
The BB hang check simply loops over an observation register checking
for a stuck state engine, but it can happen under high traffic
conditions. Ath9k and the Atheros HAL simply log a debug message and
continue.
Private to FreeBSD:
* Add HAL_DEBUG_HANG to the debug fields
* Change the hang debugging to HAL_DEBUG_HANG rather than HAL_DEBUG_DFS
like in the Atheros HAL.
Obtained from: Atheros
For now, these are equivalent macros. AR_SREV_OWL{X}_OR_LATER
will later change to exclude Howl (AR9130) in line with what
the Atheros HAL does.
This should not functionally change anything.
Obtained from: Atheros
A quick story, which is partially documented in the commit.
The silicon revision in Linux ath9k and the Atheros HAL use an
AR_SREV_REVISION mask of 0x07.
FreeBSD's HAL uses the AR5212 AR_SREV_REVISION mask of 0x0F.
Thus the OWL silicon revisions were coming through as 0xA, 0xB,
0xC, rather than 0x0, 0x1 and 0x2.
My ath9k-sourced AR_SREV_OWL_<X> macros were thus using the wrong
silicon revision values and wouldn't correctly match.
This commit does a few things:
* Change the AR_SREV_OWL_<x> macros to use the AR_SREV_REVISION_OWL_*
values, not AR_XSREV_REVISION_OWL macros;
* Disable AR_XSREV_REVISION_OWL_* values;
* Modify the IS_5416 to properly check the MAC is OWL, rather than
potentially matching on non-OWL revisions (which shouldn't happen
unless there's a silicon revision of higher than 0x9 in a later
chip..)
* Add a couple more macros from the Atheros HAL for compatibility.
The main difference now is that the Atheros HAL defines
AR_SREV_OWL_{20,22}_OR_LATER subtly differently - it fails on all HOWL
silicon. The AR_SREV_5416_*_OR_LATER macros match on the relevant OWL
version -and- all HOWL versions, along with subsequent versions.
A subsequent commit is going to migrate the uses of AR_SREV_OWL_X_OR_LATER
to AR_SREV_5416_X_OR_LATER to match what's going on in the Atheros HAL.
There's only two uses of AR_SREV_OWL_X_OR_LATER which currently don't
apply to FreeBSD but it may do in the future.
Yes, it's all confusing!
tick driving logic to xl_tick(). Now xl_tick() handles MII tick as
well as periodic updating of statistics.
This change removes a hack used in interrupt handler where it
wanted to update statistics without driving MII tick.
picking the next available one. This may explain why xl(4) sees TX
underrun error with no queued frame. I hope this addresses a long
standing xl(4) watchdog timeout issue as well.
Obtained from: OpenBSD
RX descriptor ring. Previously it returned the number of frames
that were successfully passed to upper stack which in turn means it
ignored frames that were discarded due to errors. The number of
processed frames in RX descriptor ring is used to detect whether
driver is out of sync with controller's current descriptor pointer.
Returning number of processed frames reduces unnecessary (probably
wrong) re-synchronization.
While here, remove unnecessary local variable initialization.
handler for 3C90x and 3C90xB/C respectively. This simplifies ioctl
handler as well as enhancing readability.
While I'm here don't reprogram multicast filter when driver is not
running.
Transmission error in tun(4) is queueing error(i.e. ENOBUFS) and it
has nothing to do with collision.
Reported by: Zeus V Panchenko (zeus <> ibs dot dn dot ua)
new NFS client. It will then be reduced to whatever the
server says it can support. There might be an argument
that this could be one block larger, but since NFS is
a byte granular system, I chose not to do that.
Suggested by: Matt Dillon
Tested by: Daniel Braniss (earlier version)
MFC after: 2 weeks
This also introduces a new detection path for family 10h and newer
pre-bulldozer cpus, pre-10h hardware should not be affected.
Tested by: Gary Jennejohn <gljennjohn@googlemail.com>
(with pre-10h hardware)
MFC after: 2 weeks
versions instead. They were never needed as bus_generic_intr() and
bus_teardown_intr() had been changed to pass the original child device up
in 42734, but the ISA bus was not converted to new-bus until 45720.
or f_ffree fields of "struct statfs" are negative, since the
values that go on the wire are unsigned and will appear to be
very large positive values otherwise. This makes the handling
of a negative f_bavail compatible with the old/regular NFS server.
MFC after: 2 weeks
This fixes heavy interrupt storm and resulting system freeze when using
LAPIC timer in one-shot mode under Xen HVM. There, unlike real hardware,
programming timer with zero period almost immediately causes interrupt.
this there is a rare return path that bogusly appears
to fail when it should not. Also white space correction.
Thanks to Arnaud Lacombe for noticing the problem.
Quoting the ath9k commit message:
At present the noise floor calibration is processed in supported
control and extension chains rather than required chains.
Unnccesarily doing nfcal in all supported chains leads to
invalid nf readings on extn chains and these invalid values
got updated into history buffer. While loading those values
from history buffer is moving the chip to deaf state.
This issue was observed in AR9002/AR9003 chips while doing
associate/dissociate in HT40 mode and interface up/down
in iterative manner. After some iterations, the chip was moved
to deaf state. Somehow the pci devices are recovered by poll work
after chip reset. Raading the nf values in all supported extension chains
when the hw is not yet configured in HT40 mode results invalid values.
Reference: https://patchwork.kernel.org/patch/753862/
Obtained from: Linux ath9k
The checks should function as follows:
* AR_SREV_<silicon> : check macVersion matches that version id
* AR_SREV_<silicon>_<revision> : check macVersion and macRevision match
the version / revision respectively
* AR_SREV_<silicon>_<revision>_OR_LATER: check that
+ if the chip silicon version == macVersion, enforce revision >= macRevision
+ if the chip silicon version > macVersion, allow it.
For example, AR_SREV_MERLIN() only matches AR9280 (any revision),
AR_SREV_MERLIN_10() would only match AR9280 version 1.0, but
AR_SREV_MERLIN_20_OR_LATER() matches AR9280 version >= 2.0 _AND_
any subsequent MAC (So AR9285, AR9287, etc.)
The specific fixes which may impact users:
* if there is Merlin hardware > revision 2.0, it'll now be correctly
matched by AR_SREV_MERLIN_20_OR_LATER() - the older code simply
would match on either Merlin 2.0 or a subsequent MAC (AR9285, AR9287, etc.)
* Kite version 1.1/1.2 should now correctly match. As these macros
are used in the AR9285 reset/attach path, and it's assumed that the
hardware is kite anyway, the behaviour shouldn't change. It'll only
change if these macros are used in other codepaths shared with
older silicon.
Obtained from: Linux ath9k, Atheros
Reference code that shows how to get a packet's timestamp out of
cxgbe(4). Disabled by default because we don't have a standard way
today to pass this information up the stack.
The timestamp is 60 bits wide and each increment represents 1 tick of
the T4's core clock. As an example, the timestamp granularity is ~4.4ns
for this card:
# sysctl dev.t4nex.0.core_clock
dev.t4nex.0.core_clock: 228125
MFC after: 1 week