disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core
this is a low-functionality change that changes the kernel to access the main
thread of a process via the linked list of threads rather than
assuming that it is embedded in the process. It IS still embeded there
but remove all teh code that assumes that in preparation for the next commit
which will actually move it out.
Reviewed by: peter@freebsd.org, gallatin@cs.duke.edu, benno rice,
from old signal handlers. This is simpler and faster, and fixes (new)
sigreturn(2) when %eip in the new signal context happens to match the
magic value (0x1d516). 0x1d516 is below the default ELF text section,
so this probably never broken anything in practice.
locore.s:
In addition, don't build the signal trampoline for old signal handlers
when it is not used.
alpha:
Not fixed, but seems to be even less broken in practice due to more
advanced magic. A false match occurs for register #32 in mc_regs[].
Since there is no hardware register #32, a false match is only possible
for direct calls to sigreturn(2) that happen to have the magic number
in the spare mc_regs[32] field.
some arches and the syscall table is machine-independent. It was
(bogusly) conditional on COMPAT_43, so this usually makes no difference.
ia64: in addition:
- replace the bogus cloned comment before osigreturn() by a correct one.
osigreturn() is just a stub fo ia64's.
- fix the formatting of cloned comment before sigreturn().
- fix the return code. use nosys() instead of returning ENOSYS to get
the same semantics as if the syscall is not in the syscall table.
Generating SIGSYS is actually correct here.
- fix style bugs.
powerpc: copy the cleaned up ia64 stub. This mainly fixes a bogus comment.
sparc64: copy the cleaned up the ia64 stub, since there was no stub before.
traps on the first instruction of signal handlers.
In trap.c:syscall(), fake a trace trap if the single-step flag was set
on entry to the kernel, not if it will be set on exit from the kernel.
This fixes bogus trace traps after the last instruction of signal handlers.
gdb-4.18 (the version in FreeBSD) still has problems with the program in
the PR. These seem to be due to bugs in gdb and not in FreeBSD, and are
fixed in gdb-5.1 (the distribution version).
PR: 33262
Tested by: k Macy <kip_macy@yahoo.com>
MFC after: 1 day
mutex releases to not require flags for the cases when preemption is
not allowed:
The purpose of the MTX_NOSWITCH and SWI_NOSWITCH flags is to prevent
switching to a higher priority thread on mutex releease and swi schedule,
respectively when that switch is not safe. Now that the critical section
API maintains a per-thread nesting count, the kernel can easily check
whether or not it should switch without relying on flags from the
programmer. This fixes a few bugs in that all current callers of
swi_sched() used SWI_NOSWITCH, when in fact, only the ones called from
fast interrupt handlers and the swi_sched of softclock needed this flag.
Note that to ensure that swi_sched()'s in clock and fast interrupt
handlers do not switch, these handlers have to be explicitly wrapped
in critical_enter/exit pairs. Presently, just wrapping the handlers is
sufficient, but in the future with the fully preemptive kernel, the
interrupt must be EOI'd before critical_exit() is called. (critical_exit()
can switch due to a deferred preemption in a fully preemptive kernel.)
I've tested the changes to the interrupt code on i386 and alpha. I have
not tested ia64, but the interrupt code is almost identical to the alpha
code, so I expect it will work fine. PowerPC and ARM do not yet have
interrupt code in the tree so they shouldn't be broken. Sparc64 is
broken, but that's been ok'd by jake and tmm who will be fixing the
interrupt code for sparc64 shortly.
Reviewed by: peter
Tested on: i386, alpha