SIGCHLD signal, should keep full 32 bits of the status passed to the
_exit(2).
Split the combined p_xstat of the struct proc into the separate exit
status p_xexit for normal process exit, and signalled termination
information p_xsig. Kernel-visible macro KW_EXITCODE() reconstructs
old p_xstat from p_xexit and p_xsig. p_xexit contains complete status
and copied out into si_status.
Requested by: Joerg Schilling
Reviewed by: jilles (previous version), pho
Tested by: pho
Sponsored by: The FreeBSD Foundation
Add support for the <sys/mman.h> functions by wrapping around our own
implementations. There are no kern_*() variants of these system calls,
but we also don't need them in this case. It is sufficient to just call
into the sys_*() functions.
Differential Revision: https://reviews.freebsd.org/D3033
Reviewed by: brooks
Summary:
For CloudABI we need to put two things on the stack of new processes:
the argument data (a binary blob; not strings) and a startup data
structure. The startup data structure contains interesting things such
as a pointer to the ELF program header, the thread ID of the initial
thread, a stack smashing protection canary, and a pointer to the
argument data.
Fetching system call arguments and setting the return value is similar
to FreeBSD. The only differences are that system call 0 does not exist
and that we call into cloudabi_convert_errno() to convert the error
code. We also need this function in a couple of other places, so we'd
better reuse it here.
Reviewers: dchagin, kib
Reviewed By: kib
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3098
Summary:
In a runtime that is purely based on capability-based security, there is
a strong emphasis on how programs start their execution. We need to make
sure that we execute an new program with an exact set of file
descriptors, ensuring that credentials are not leaked into the process
accidentally.
Providing the right file descriptors is just half the problem. There
also needs to be a framework in place that gives meaning to these file
descriptors. How does a CloudABI mail server know which of the file
descriptors corresponds to the socket that receives incoming emails?
Furthermore, how will this mail server acquire its configuration
parameters, as it cannot open a configuration file from a global path on
disk?
CloudABI solves this problem by replacing traditional string command
line arguments by tree-like data structure consisting of scalars,
sequences and mappings (similar to YAML/JSON). In this structure, file
descriptors are treated as a first-class citizen. When calling exec(),
file descriptors are passed on to the new executable if and only if they
are referenced from this tree structure. See the cloudabi-run(1) man
page for more details and examples (sysutils/cloudabi-utils).
Fortunately, the kernel does not need to care about this tree structure
at all. The C library is responsible for serializing and deserializing,
but also for extracting the list of referenced file descriptors. The
system call only receives a copy of the serialized data and a layout of
what the new file descriptor table should look like:
int proc_exec(int execfd, const void *data, size_t datalen, const int *fds,
size_t fdslen);
This change introduces a set of fd*_remapped() functions:
- fdcopy_remapped() pulls a copy of a file descriptor table, remapping
all of the file descriptors according to the provided mapping table.
- fdinstall_remapped() replaces the file descriptor table of the process
by the copy created by fdcopy_remapped().
- fdescfree_remapped() frees the table in case we aborted before
fdinstall_remapped().
We then add a function exec_copyin_data_fds() that builds on top these
functions. It copies in the data and constructs a new remapped file
descriptor. This is used by cloudabi_sys_proc_exec().
Test Plan:
cloudabi-run(1) is capable of spawning processes successfully, providing
it data and file descriptors. procstat -f seems to confirm all is good.
Regular FreeBSD processes also work properly.
Reviewers: kib, mjg
Reviewed By: mjg
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3079
We can map these system calls directly to the FreeBSD counterparts. The
other filesystem related system calls will be sent out for review
separately, as they are a bit more complex to get right.
The random_get() system call works similar to getentropy()/getrandom()
on OpenBSD/Linux. It fills a buffer with random data.
This change introduces a new function, read_random_uio(), that is used
to implement read() on the random devices. We can call into this
function from within the CloudABI compatibility layer.
Approved by: secteam
Reviewed by: jmg, markm, wblock
Obtained from: https://github.com/NuxiNL/freebsd
Differential Revision: https://reviews.freebsd.org/D3053
The first system call is used to set the user TLS address. Right now
this system call is invoked by the C library for both the initial thread
and additional threads unconditionally, but in the future we'll only
call this if the architecture does not support this. On recent x86-64
CPUs we could use the WRFSBASE instruction.
This system call was erroneously placed in sys/compat/cloudabi64, even
though it does not depend on any pointer size dependent datastructure.
Move it to the right place.
Obtained from: https://github.com/NuxiNL/freebsd
Add a routine similar to copyinuio() and freebsd32_copyinuio() that
copies in CloudABI's struct iovecs. These are then translated into
FreeBSD format and placed in a 'struct uio', so we can call into the
kern_*() functions.
Obtained from: https://github.com/NuxiNL/freebsd
Summary:
As discussed with kib@ in response to r285404, don't call into
kern_sigaction() within proc_raise() to reset the signal to the default
action before delivery. We'd better do that during image execution.
Change the code to simply use pksignal(), so we don't waste cycles on
functions like pfind() to look up the currently running process itself.
Test Plan:
This change has also been pushed into the cloudabi branch on GitHub. The
raise() tests still seem to pass.
Reviewers: kib
Reviewed By: kib
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3076
CloudABI does not provide an explicit kill() system call, for the reason
that there is no access to the global process namespace. Instead, it
offers a raise() system call that can at least be used to terminate the
process abnormally.
CloudABI does not support installing signal handlers. CloudABI's raise()
system call should behave as if the default policy is set up. Call into
kern_sigaction(SIG_DFL) before calling sys_kill() to force this.
Obtained from: https://github.com/NuxiNL/freebsd
Previously several places were doing it on its own, partially
incorrectly (e.g. without the filedesc locked) or even actively harmful
by populating jdir or assigning rootvnode without vrefing it.
Reviewed by: kib
All of the CloudABI system calls that operate on file descriptors of an
arbitrary type are prefixed with fd_. This change adds wrappers for
most of these system calls around their FreeBSD equivalents.
The dup2() system call present on CloudABI deviates from POSIX, in the
sense that it can only be used to replace existing file descriptor. It
cannot be used to create new ones. The reason for this is that this is
inherently thread-unsafe. Furthermore, there is no need on CloudABI to
use fixed file descriptor numbers. File descriptors 0, 1 and 2 have no
special meaning.
This change exposes the kern_dup() through <sys/syscallsubr.h> and puts
the FDDUP_* flags in <sys/filedesc.h>. It then adds a new flag,
FDDUP_MUSTREPLACE to force that file descriptors are replaced -- not
allocated.
Differential Revision: https://reviews.freebsd.org/D3035
Reviewed by: mjg
CloudABI is a pure capability-based runtime environment for UNIX. It
works similar to Capsicum, except that processes already run in
capabilities mode on startup. All functionality that conflicts with this
model has been omitted, making it a compact binary interface that can be
supported by other operating systems without too much effort.
CloudABI is 'secure by default'; the idea is that it should be safe to
run arbitrary third-party binaries without requiring any explicit
hardware virtualization (Bhyve) or namespace virtualization (Jails). The
rights of an application are purely determined by the set of file
descriptors that you grant it on startup.
The datatypes and constants used by CloudABI's C library (cloudlibc) are
defined in separate files called syscalldefs_mi.h (pointer size
independent) and syscalldefs_md.h (pointer size dependent). We import
these files in sys/contrib/cloudabi and wrap around them in
cloudabi*_syscalldefs.h.
We then add stubs for all of the system calls in sys/compat/cloudabi or
sys/compat/cloudabi64, depending on whether the system call depends on
the pointer size. We only have nine system calls that depend on the
pointer size. If we ever want to support 32-bit binaries, we can simply
add sys/compat/cloudabi32 and implement these nine system calls again.
The next step is to send in code reviews for the individual system call
implementations, but also add a sysentvec, to allow CloudABI executabled
to be started through execve().
More information about CloudABI:
- GitHub: https://github.com/NuxiNL/cloudlibc
- Talk at BSDCan: https://www.youtube.com/watch?v=SVdF84x1EdA
Differential Revision: https://reviews.freebsd.org/D2848
Reviewed by: emaste, brooks
Obtained from: https://github.com/NuxiNL/freebsd
Use the same scheme implemented to manage credentials.
Code needing to look at process's credentials (as opposed to thred's) is
provided with *_proc variants of relevant functions.
Places which possibly had to take the proc lock anyway still use the proc
pointer to access limits.
When providing memory map information to userland, populate the vnode pointer
for tmpfs files. Set the memory mapping to appear as a vnode type, to match
FreeBSD 9 behavior.
This fixes the use of tmpfs files with the dtrace pid provider,
procstat -v, procfs, linprocfs, pmc (pmcstat), and ptrace (PT_VM_ENTRY).
Submitted by: Eric Badger <eric@badgerio.us> (initial revision)
Obtained from: Dell Inc.
PR: 198431
MFC after: 2 weeks
Reviewed by: jhb
Approved by: kib (mentor)
writes the remaining time into the structure pointed to by rmtp
unless rmtp is NULL. The value of *rmtp can then be used to call
nanosleep() again and complete the specified pause if the previous
call was interrupted.
Note. clock_nanosleep() with an absolute time value does not write
the remaining time.
While here fix whitespaces and typo in SDT_PROBE.
implemented via ioctl interface. First of all return ENOTSUP for this
operation as a cp fallback to usual method in that case. Secondly, do
not print out the message about unimplemented operation.
1. Linux sigset always 64 bit on all platforms. In order to move Linux
sigset code to the linux_common module define it as 64 bit int. Move
Linux sigset manipulation routines to the MI path.
2. Move Linux signal number definitions to the MI path. In general, they
are the same on all platforms except for a few signals.
3. Map Linux RT signals to the FreeBSD RT signals and hide signal conversion
tables to avoid conversion errors.
4. Emulate Linux SIGPWR signal via FreeBSD SIGRTMIN signal which is outside
of allowed on Linux signal numbers.
PR: 197216