LABEL_TO_SLOT() macro used by policy modules to query and set label data
in struct label. Instead of using a union, store an intptr_t, simplifying
the API.
Update policies: in most cases this required only small tweaks to current
wrapper macros. In two cases, a single wrapper macros had to be split into
separate get and set macros.
Move struct label definition from _label.h to mac_internal.h and remove
_label.h. With this change, policies may now treat struct label * as
opaque, allowing us to change the layout of struct label without breaking
the policy module ABI. For example, we could make the maximum number of
policies with labels modifiable at boot-time rather than just at
compile-time.
Obtained from: TrustedBSD Project
Don't perform a nested include of _label.h in mac.h, as mac.h now
describes only the user API to MAC, and _label.h defines the in-kernel
representation of MAC labels.
Remove mac.h includes from policies and MAC framework components that do
not use userspace MAC API definitions.
Add _KERNEL inclusion checks to mac_internal.h and mac_policy.h, as these
are kernel-only include files
Obtained from: TrustedBSD Project
kernel<->policy ABI version. Add a comment to the definition describing
it and listing known versions. Modify MAC_POLICY_SET() to reference the
current kernel version by name rather than by number.
Staticize mac_late, which is used only in mac_framework.c.
Obtained from: TrustedBSD Project
subsystems will be a property of policy modules, which may require
access control check entry points to be invoked even when not actively
enforcing (i.e., to track information flow without providing
protection).
Obtained from: TrustedBSD Project
Suggested by: Christopher dot Vance at sparta dot com
privilege for threads and credentials. Unlike the existing suser(9)
interface, priv(9) exposes a named privilege identifier to the privilege
checking code, allowing more complex policies regarding the granting of
privilege to be expressed. Two interfaces are provided, replacing the
existing suser(9) interface:
suser(td) -> priv_check(td, priv)
suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags)
A comprehensive list of currently available kernel privileges may be
found in priv.h. New privileges are easily added as required, but the
comments on adding privileges found in priv.h and priv(9) should be read
before doing so.
The new privilege interface exposed sufficient information to the
privilege checking routine that it will now be possible for jail to
determine whether a particular privilege is granted in the check routine,
rather than relying on hints from the calling context via the
SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail
check function, prison_priv_check(), is exposed from kern_jail.c and used
by the privilege check routine to determine if the privilege is permitted
in jail. As a result, a centralized list of privileges permitted in jail
is now present in kern_jail.c.
The MAC Framework is now also able to instrument privilege checks, both
to deny privileges otherwise granted (mac_priv_check()), and to grant
privileges otherwise denied (mac_priv_grant()), permitting MAC Policy
modules to implement privilege models, as well as control a much broader
range of system behavior in order to constrain processes running with
root privilege.
The suser() and suser_cred() functions remain implemented, now in terms
of priv_check() and the PRIV_ROOT privilege, for use during the transition
and possibly continuing use by third party kernel modules that have not
been updated. The PRIV_DRIVER privilege exists to allow device drivers to
check privilege without adopting a more specific privilege identifier.
This change does not modify the actual security policy, rather, it
modifies the interface for privilege checks so changes to the security
policy become more feasible.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
other problems while labels were first being added to various kernel
objects. They have outlived their usefulness.
MFC after: 1 month
Suggested by: Christopher dot Vance at SPARTA dot com
Obtained from: TrustedBSD Project
with other commonly used sysctl name spaces, rather than declaring them
all over the place.
MFC after: 1 month
Sponsored by: nCircle Network Security, Inc.
to a new mac_inet.c. This code is now conditionally compiled based
on inet support being compiled into the kernel.
Move socket related MAC Framework entry points from mac_net.c to a new
mac_socket.c.
To do this, some additional _enforce MIB variables are now non-static.
In addition, mbuf_to_label() is now mac_mbuf_to_label() and non-static.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, McAfee Research
to use the "year1-year3" format, as opposed to "year1, year2, year3".
This seems to make lawyers more happy, but also prevents the
lines from getting excessively long as the years start to add up.
Suggested by: imp
system calls, and prefer these calls over getsockopt()/setsockopt()
for ABI reasons. When addressing UNIX domain sockets, these calls
retrieve and modify the socket label, not the label of the
rendezvous vnode.
- Create mac_copy_socket_label() entry point based on
mac_copy_pipe_label() entry point, intended to copy the socket
label into temporary storage that doesn't require a socket lock
to be held (currently Giant).
- Implement mac_copy_socket_label() for various policies.
- Expose socket label allocation, free, internalize, externalize
entry points as non-static from mac_net.c.
- Use mac_socket_label_set() in __mac_set_fd().
MAC-aware applications may now use mac_get_fd(), mac_set_fd(), and
mac_get_peer() to retrieve and set various socket labels without
directly invoking the getsockopt() interface.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mac_setsockopt_label() into mac_socket_label_set(); make it non-static
so that it can be invoked from kern_mac.c for mac_set_fd().
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
This fixes a dependency of mac_label.c on namespace pollution in
<vm/uma.h>.
Similarly for SYSCTL_DECL() although I had no problems with it. This
probably makes some includes of <sys/sysctl.h> bogus.
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
type, rather than "object_label" as the first argument. This reduces
complexity a little for the consumer, and also makes it easier for
use to rename the underlying entry points in struct mac_policy_obj.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
in mac_internal.h:
Sysctl tree declarations.
Policy list structure definition.
Policy list variables (static, dynamic).
mac_late flag.
Enforcement flags for process, vm, which have checks in multiple files.
mac_labelmbufs variable to drive conditional mbuf labeling.
M_MACTEMP malloc type.
Debugging counter macros.
MAC Framework infrastructure primitives, including policy locking
primitives, kernel label initialization/destruction, userland
label consistency checks, policy slot allocation.
Per-object interfaces for objects that are internalized and externalized
using system calls that will remain centrally defined: credentials,
pipes, vnodes.
MAC policy composition macros: MAC_CHECK, MAC_BOOLEAN, MAC_EXTERNALIZE,
MAC_INTERNALIZE, MAC_PERFORM.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mac_reflect_mbuf_icmp()
mac_reflect_mbuf_tcp()
These entry points permit MAC policies to do "update in place"
changes to the labels on ICMP and TCP mbuf headers when an ICMP or
TCP response is generated to a packet outside of the context of
an existing socket. For example, in respond to a ping or a RST
packet to a SYN on a closed port.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
explicit access control checks to delete and list extended attributes
on a vnode, rather than implicitly combining with the setextattr and
getextattr checks. This reflects EA API changes in the kernel made
recently, including the move to explicit VOP's for both of these
operations.
Obtained from: TrustedBSD PRoject
Sponsored by: DARPA, Network Associates Laboratories
MAC_DEBUG_COUNTER_INC() and MAC_DEBUG_COUNTER_DEC() to maintain
debugging counter values rather than #ifdef'ing the atomic
operations to MAC_DEBUG.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
the MAC policy modules to improve robustness against C string
bugs and vulnerabilities. Following these revisions, all
string construction of labels for export to userspace (or
elsewhere) is performed using the sbuf API, which prevents
the consumer from having to perform laborious and intricate
pointer and buffer checks. This substantially simplifies
the externalization logic, both at the MAC Framework level,
and in individual policies; this becomes especially useful
when policies export more complex label data, such as with
compartments in Biba and MLS.
Bundled in here are some other minor fixes associated with
externalization: including avoiding malloc while holding the
process mutex in mac_lomac, and hence avoid a failure mode
when printing labels during a downgrade operation due to
the removal of the M_NOWAIT case.
This has been running in the MAC development tree for about
three weeks without problems.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
Several of the subtypes have an associated vnode which is used for
stuff like the f*() functions.
By giving the vnode a speparate field, a number of checks for the specific
subtype can be replaced simply with a check for f_vnode != NULL, and
we can later free f_data up to subtype specific use.
At this point in time, f_data still points to the vnode, so any code I
might have overlooked will still work.
constants in question refer to the number of label slots, not the
maximum number of policies that may be loaded. This should reduce
confusion regarding an element in the MAC sysctl MIB, as well as
make it more clear what the affect of changing the compile-time
constants is.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
- Add a parameter to vm_pageout_flush() that tells vm_pageout_flush()
whether its caller has locked the vm_object. (This is a temporary
measure to bootstrap vm_object locking.)
don't try and convert the argument flags to malloc flags, or we risk
implicitly requesting blocking and generating witness warnings.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mbuf_to_label(). This permits the vast majority of entry point code
to be unaware that labels are stored in m->m_pkthdr.label, such that
we can experiment storage of labels elsewhere (such as in m_tags).
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
of asserting that an mbuf has a packet header. Use it instead of hand-
rolled versions wherever applicable.
Submitted by: Hiten Pandya <hiten@unixdaemons.com>
additional flags argument to indicate blocking disposition, and
pass in M_NOWAIT from the IP reassembly code to indicate that
blocking is not OK when labeling a new IP fragment reassembly
queue. This should eliminate some of the WITNESS warnings that
have started popping up since fine-grained IP stack locking
started going in; if memory allocation fails, the creation of
the fragment queue will be aborted.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
check, mac_check_sysarch_ioperm(), permitting MAC security policy
modules to control access to these interfaces. Currently, they
protect access to IOPL on i386, and setting HAE on Alpha.
Additional checks might be required on other platforms to prevent
bypass of kernel security protections by unauthorized processes.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
modules to authorize disabling of swap against a particular vnode.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
pointer types, and remove a huge number of casts from code using it.
Change struct xfile xf_data to xun_data (ABI is still compatible).
If we need to add a #define for f_data and xf_data we can, but I don't
think it will be necessary. There are no operational changes in this
commit.
unused. Replace it with a dm_mount back-pointer to the struct mount
that the devfs_mount is associated with. Export that pointer to MAC
Framework entry points, where all current policies don't use the
pointer. This permits the SEBSD port of SELinux's FLASK/TE to compile
out-of-the-box on 5.0-CURRENT with full file system labeling support.
Approved by: re (murray)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories