the syscall arguments and does the suser() permission check, and
kern_mlock(), which does the resource limit checking and calls
vm_map_wire(). Split munlock() in a similar way.
Enable the RLIMIT_MEMLOCK checking code in kern_mlock().
Replace calls to vslock() and vsunlock() in the sysctl code with
calls to kern_mlock() and kern_munlock() so that the sysctl code
will obey the wired memory limits.
Nuke the vslock() and vsunlock() implementations, which are no
longer used.
Add a member to struct sysctl_req to track the amount of memory
that is wired to handle the request.
Modify sysctl_wire_old_buffer() to return an error if its call to
kern_mlock() fails. Only wire the minimum of the length specified
in the sysctl request and the length specified in its argument list.
It is recommended that sysctl handlers that use sysctl_wire_old_buffer()
should specify reasonable estimates for the amount of data they
want to return so that only the minimum amount of memory is wired
no matter what length has been specified by the request.
Modify the callers of sysctl_wire_old_buffer() to look for the
error return.
Modify sysctl_old_user to obey the wired buffer length and clean up
its implementation.
Reviewed by: bms
metadata. This fixes module dependency resolution by the kernel linker on
sparc64, where the relocations for the metadata are different than on other
architectures; the relative offset is in the addend of an Elf_Rela record
instead of the original value of the location being patched.
Also fix printf formats in debug code.
Submitted by: Hartmut Brandt <brandt@fokus.gmd.de>
PR: 46732
Tested on: alpha (obrien), i386, sparc64
checks permit policy modules to augment the system policy for permitting
kld operations. This permits policies to limit access to kld operations
based on credential (and other) properties, as well as to perform checks
on the kld being loaded (integrity, etc).
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
linked in the kernel. When this condition is detected deep in the linker
internals the EEXIST error code that's returned is stomped on and instead
an ENOEXEC code is returned. This makes apps like sysinstall bitch.
make a series of modifications to the credential arguments relating
to file read and write operations to cliarfy which credential is
used for what:
- Change fo_read() and fo_write() to accept "active_cred" instead of
"cred", and change the semantics of consumers of fo_read() and
fo_write() to pass the active credential of the thread requesting
an operation rather than the cached file cred. The cached file
cred is still available in fo_read() and fo_write() consumers
via fp->f_cred. These changes largely in sys_generic.c.
For each implementation of fo_read() and fo_write(), update cred
usage to reflect this change and maintain current semantics:
- badfo_readwrite() unchanged
- kqueue_read/write() unchanged
pipe_read/write() now authorize MAC using active_cred rather
than td->td_ucred
- soo_read/write() unchanged
- vn_read/write() now authorize MAC using active_cred but
VOP_READ/WRITE() with fp->f_cred
Modify vn_rdwr() to accept two credential arguments instead of a
single credential: active_cred and file_cred. Use active_cred
for MAC authorization, and select a credential for use in
VOP_READ/WRITE() based on whether file_cred is NULL or not. If
file_cred is provided, authorize the VOP using that cred,
otherwise the active credential, matching current semantics.
Modify current vn_rdwr() consumers to pass a file_cred if used
in the context of a struct file, and to always pass active_cred.
When vn_rdwr() is used without a file_cred, pass NOCRED.
These changes should maintain current semantics for read/write,
but avoid a redundant passing of fp->f_cred, as well as making
it more clear what the origin of each credential is in file
descriptor read/write operations.
Follow-up commits will make similar changes to other file descriptor
operations, and modify the MAC framework to pass both credentials
to MAC policy modules so they can implement either semantic for
revocation.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
linker_load_module() instead.
This fixes a bug where the kernel was unable to properly locate and
load a kernel module in vfs_mount() (and probably in the netgraph
code as well since it was using the same function). This is because
the linker_load_file() does not properly search the module path.
Problem found by: peter
Reviewed by: peter
Thanks to: peter
- Added a mutex, kld_mtx, to protect the kernel_linker system. Note that
while ``classes'' is global (to that file), it is only read only after
SI_SUB_KLD, SI_ORDER_ANY.
- Add a SYSINIT to flip a flag that disallows class registration after
SI_SUB_KLD, SI_ORDER_ANY.
Idea for ``classes'' read only by: jake
Reviewed by: jake
linker_search_module().
Without this, modules loaded from loader.conf that then try to load
in additional modules (such as digi.ko loading a card's BIOS) die
badly in the vn_open() called from linker_search_module().
It may be worth checking (KASSERTing?) that rootdev != NODEV in
vn_open() too.
mod_depend * (which may be NULL). The only consumer of this
function at the moment is digi_loadmoduledata(), and that passes
a NULL mod_depend *.
In linker_reference_module(), check to see if we've already got
the required module loaded. If we have, bump the reference count
and return that, otherwise continue the module search as normal.
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@
kern_linker.c and rev. 1.237 of vfs_syscalls.c since these are not the
source of the recent panics occuring around kldloading file system
support modules.
Requested by: rwatson
made aware in jail environments. Supposedly something is broken, so
this should be backed out until further investigation proves otherwise,
or a proper fix can be provided.
against users within a jail attempting to load kernel modules.
- Add a check of securelevel_gt() to vfs_mount() in order to chop some
low hanging fruit for the repair of securelevel checking of linking and
unlinking files from within jails. There is more to be done here.
Reviewed by: rwatson
all the global bits of ``module'' data. This commit adds a few generic
macros, MOD_SLOCK, MOD_XLOCK, etc., that are meant to be used as ways
of accessing the SX lock. It is also the first step in helping to lock
down the kernel linker and module systems.
Reviewed by: jhb, jake, smp@
in "missing dependencies" error when loading some kld modules. It is sad to
see how often these days style cleanus break doesn't broken things. Perhaps
people should recall good old principle: "don't fix it if it isn't broken".
credential selection, rather than reference via a thread or process
pointer. This is part of a gradual migration to suser() accepting
a struct ucred instead of a struct proc, simplifying the reference
and locking semantics of suser().
Obtained from: TrustedBSD Project
function symbols in the kernel in a list of C strings, with an extra
nul-termination at the end.
This sysctl requires addition of a new linker operation. Now,
linker_file_t's need to respond to "each_function_name" to export
their function symbols.
Note that the sysctl doesn't currently allow distinguishing multiple
symbols with the same name from different modules, but could quite
easily without a change to the linker operation. This will be a nicety
to have when it can be used.
Obtained from: NAI Labs CBOSS project
Funded by: DARPA
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
Replace the a.out emulation of 'struct linker_set' with something
a little more flexible. <sys/linker_set.h> now provides macros for
accessing elements and completely hides the implementation.
The linker_set.h macros have been on the back burner in various
forms since 1998 and has ideas and code from Mike Smith (SET_FOREACH()),
John Polstra (ELF clue) and myself (cleaned up API and the conversion
of the rest of the kernel to use it).
The macros declare a strongly typed set. They return elements with the
type that you declare the set with, rather than a generic void *.
For ELF, we use the magic ld symbols (__start_<setname> and
__stop_<setname>). Thanks to Richard Henderson <rth@redhat.com> for the
trick about how to force ld to provide them for kld's.
For a.out, we use the old linker_set struct.
NOTE: the item lists are no longer null terminated. This is why
the code impact is high in certain areas.
The runtime linker has a new method to find the linker set
boundaries depending on which backend format is in use.
linker sets are still module/kld unfriendly and should never be used
for anything that may be modular one day.
Reviewed by: eivind