535 Commits

Author SHA1 Message Date
attilio
4af1dcdee0 Use, in uncovered part, the END() macro in order to improve debugging.
In this specific case, Valgrind won't get confused when analyzing such
functions.

Sponsored by:	Sandvine Incorporated
Tested by:	emaste
MFC:		3 days
2009-05-25 14:37:10 +00:00
das
78607e9faf Namespace: scalb() is withdrawn from POSIX. 2009-03-14 18:58:53 +00:00
das
fa12b26b66 Eliminate __real__ and __imag__ gccisms. 2009-03-14 18:24:15 +00:00
das
e4a9234f1f C99 TC2 now wants FP_FAST_FMA* to be defined to 1, if the macros are
defined at all. See also: defect report #223.
2009-02-07 05:41:24 +00:00
das
bbd91baa08 Use __gnu89_inline so that these files will compile with newer versions
of gcc, where the meaning of 'inline' was changed to match C99.

Noticed by:	rdivacky
2009-01-13 05:13:20 +00:00
das
f72abde4fb Fix the types of INFINITY and NAN, which were broken in r131851. They
should both be floats, not doubles.

PR:		127795
Submitted by:	Christoph Mallon
MFC after:	2 weeks
2009-01-08 06:12:03 +00:00
marcel
cabae62b0b Add support for the FPA floating-point format on ARM. The
FPA floating-point format is identical to the VFP format,
but is always stored in big-endian.
Introduce _IEEE_WORD_ORDER to describe the byte-order of
the FP representation.

Obtained from:	Juniper Networks, Inc
2008-12-23 22:20:59 +00:00
das
9bb760c809 Remove some unused variables.
Reported by:	Intel C Compiler
2008-08-08 00:21:27 +00:00
das
ff948bbd69 In the line
#pragma STDC CX_LIMITED_RANGE   ON
the "ON" needs to be in caps. gcc doesn't understand this pragma
anyway and assumes it is always on in any case, but icc supports
it and cares about the case.
2008-08-08 00:15:16 +00:00
das
ec47be13ee Implement cproj{,f,l}(). 2008-08-07 15:07:48 +00:00
das
1a05561e34 Use cpack() and the gcc extension __imag__ to implement cimag() and
conj() instead of using expressions like z * I. The latter is bad for
several reasons:

1. It is implemented using arithmetic, which is unnecessary, and can
   generate floating point exceptions, contrary to the requirements on
   these functions.

2. gcc implements complex multiplication using a formula that breaks
   down for infinities, e.g., it gives INFINITY * I == nan + inf I.
2008-08-07 14:39:56 +00:00
das
d95c118b83 Fix some style bogosity from fdlibm. 2008-08-03 17:49:05 +00:00
das
e570127faf Minor improvements:
- Improve the order of some tests.
- Fix style.

Submitted by:	bde
2008-08-03 17:39:54 +00:00
das
9df7b1ac5c A few minor corrections, including some from bde:
- When y/x is huge, it's faster and more accurate to return pi/2
  instead of pi - pi/2.
- There's no need for 3 lines of bit fiddling to compute -z.
- Fix a comment.
2008-08-02 19:17:00 +00:00
das
affd78d50b On i386, gcc truncates long double constants to double precision
at compile time regardless of the dynamic precision, and there's
no way to disable this misfeature at compile time. Hence, it's
impossible to generate the appropriate tables of constants for the
long double inverse trig functions in a straightforward way on i386;
this change hacks around the problem by encoding the underlying bits
in the table.

Note that these functions won't pass the regression test on i386,
even with the FPU set to extended precision, because the regression
test is similarly damaged by gcc. However, the tests all pass when
compiled with a modified version of gcc.

Reported by:  	bde
2008-08-02 03:56:22 +00:00
das
2edbbc3997 Fix some problems with asinf(), acosf(), atanf(), and atan2f():
- Adjust several constants for float precision. Some thresholds
  that were appropriate for double precision were never changed
  when these routines were converted to float precision. This
  has an impact on performance but not accuracy. (Submitted by bde.)

- Reduce the degrees of the polynomials used. A smaller degree
  suffices for float precision.

- In asinf(), use double arithmetic in part of the calculation to
  avoid a corner case and some complicated arithmetic involving a
  division and some buggy constants. This improves performance and
  accuracy.

Max error (ulps):
         asinf  acosf  atanf
before   0.925  0.782  0.852
after    0.743  0.804  0.852

As bde points out, it's cheaper for asin*() and acos*() to use
polynomials instead of rational functions, but that's a task for
another day.
2008-08-01 01:24:25 +00:00
das
fea2240d10 Add implementations of acosl(), asinl(), atanl(), atan2l(),
and cargl().

Reviewed by:			bde
sparc64 testing resources from:	remko
2008-07-31 22:41:26 +00:00
das
60897dc120 Set WARNS=1.
I believe I've committed all the bits necessary to make this compile
on all supported architectures. :crosses fingers:
2008-07-31 20:11:37 +00:00
das
586e2dbb6a The high part of the mantissa is 64 bits on sparc64. 2008-07-31 20:09:47 +00:00
das
9f333dcb2c As in other parts of libm, mark a few constants as volatile to prevent
spurious optimizations. gcc doesn't support FENV_ACCESS, so when it
folds constants, it assumes that the rounding mode is always the
default and floating point exceptions never matter.
2008-07-31 19:57:50 +00:00
das
c887e4b9e4 Sort the .PATH entries to give a more reasonable order of precedence:
1. architecture-specific files
     2. long double format-specific files
     3. bsdsrc
     4. src
     5. man
The original order was virtually the opposite of this.

This should not cause any functional changes at this time. The
difference is only significant when one wants to override, say, a
generic foo.c with a more specialized foo.c (as opposed to foo.S).
2008-07-18 02:18:34 +00:00
das
13a8e1c0b6 Fix a typo in the cosl() prototype. 2008-06-28 01:43:24 +00:00
das
9e4d306f6f Implement fmodl.
Document fmodl and fix some errors in the fmod manpage.
2008-06-19 22:39:53 +00:00
gonzo
1f093a69bb Symbol.map is handled by cpp, so use C-style comments
Approved by:	cognet (mentor)
2008-05-03 21:16:08 +00:00
imp
9623d72c05 Add mips support to libm, from mips2-jnpr perforce branch. 2008-04-26 12:20:29 +00:00
das
6a8cdf6fed Fix some corner cases:
- fma(x, y, z) returns z, not NaN, if z is infinite, x and y are finite,
  x*y overflows, and x*y and z have opposite signs.
- fma(x, y, z) doesn't generate an overflow, underflow, or inexact exception
  if z is NaN or infinite, as per IEEE 754R.
- If the rounding mode is set to FE_DOWNWARD, fma(1.0, 0.0, -0.0) is -0.0,
  not +0.0.
2008-04-03 06:14:51 +00:00
das
017bbc352e Remove a (bogus) remnant of debugging this on sparc64. 2008-03-31 13:11:45 +00:00
das
39170f049a Add assembly versions of remquol() and remainderl(). 2008-03-30 21:21:53 +00:00
das
f487ba5286 Hook remquol() and remainderl() up to the build. 2008-03-30 20:48:02 +00:00
das
b4b933cd52 Implement remainderl() as a wrapper around remquol(). The extra work
remquol() performs to compute the quotient is negligible.
2008-03-30 20:47:42 +00:00
das
8bd589e900 Implement remquol() based on remquo(). 2008-03-30 20:47:26 +00:00
das
7e1a7394d9 Implement csqrtl(). 2008-03-30 20:07:15 +00:00
das
4e563b6d98 Hook hypotl() and cabsl() up to the build. 2008-03-30 20:03:46 +00:00
das
fed973ef18 Document hypotl().
Submitted by:	Steve Kargl <sgk@troutmask.apl.washington.edu>
2008-03-30 20:03:29 +00:00
das
ca69e4f334 Alias hypotl() and cabsl() for platforms where long double is the same
as double.
2008-03-30 20:03:06 +00:00
das
b48d845e62 Implement cabsl() in terms of hypotl().
Submitted by:	Steve Kargl <sgk@troutmask.apl.washington.edu>
2008-03-30 20:02:03 +00:00
das
927d9b1d58 Implement hypotl(). This is bde's conversion of fdlibm hypot(), with minor
fixes for ld128 by me.
2008-03-30 20:01:50 +00:00
bde
2916ad3e28 Use fabs[f]() instead of bit fiddling for setting absolute values.
This makes little difference in float precision, but in double
precision gives a speedup of about 30% on amd64 (A64 CPU) and i386
(A64).  This depends on fabs[f]() being inline and efficient.  The
bit fiddling (or any use of SET_HIGH_WORD(), which libm does too
much because it was best on old 32-bit machines) always causes
packing overheads and sometimes causes stalls in the packing, since
it operates on only part of a variable in the double precision case.
It apparently did cause stalls in a critical path here.
2008-03-30 18:07:12 +00:00
bde
b06e3a074e Use the expression fabs(x+0.0)-fabs(y+0.0) instead of
fabs(x+0.0)+fabs(y+0.0) when mixing NaNs.  This improves
consistency of the result by making it harder for the compiler to reorder
the operands.  (FP addition is not necessarily commutative because the
order of operands makes a difference on some machines iff the operands are
both NaNs.)
2008-03-30 17:28:27 +00:00
bde
95436ce20d Fix a missing mask in a hi+lo decomposition. Thus bug made the extra
precision in software useless, so hypotf() had some errors in the 1-2
ulp range unless there is extra precision in hardware (as happens on
i386).
2008-03-30 17:17:42 +00:00
das
ff9d959b80 Include math.h for the fmaf() prototype. 2008-03-29 16:38:29 +00:00
das
a1fc7d5578 Fix some rather obscene code that has ambiguous if...if...else...
constructs in it.
2008-03-29 16:37:59 +00:00
das
245318776a 1 << 47 needs to be written 1ULL << 47. 2008-03-02 20:16:55 +00:00
das
635be49304 Hook up sqrtl() to the build. 2008-03-02 01:48:17 +00:00
das
09521f824a MD implementations of sqrtl(). 2008-03-02 01:48:08 +00:00
das
40c2687372 MI implementation of sqrtl(). This is very slow and should
be overridden when hardware sqrt is available.
2008-03-02 01:47:58 +00:00
bde
d32d47f4d6 Fix and improve some magic numbers for the "medium size" case.
e_rem_pio2.c:
This case goes up to about 2**20pi/2, but the comment about it said that
it goes up to about 2**19pi/2.

It went too far above 2**pi/2, giving a multiplier fn with 21 significant
bits in some cases.  This would be harmful except for a numerical
accident.  It happens that the terms of the approximation to pi/2,
when rounded to 33 bits so that multiplications by 20-bit fn's are
exact, happen to be rounded to 32 bits so multiplications by 21-bit
fn's are exact too, so the bug only complicates the error analysis (we
might lose a bit of accuracy but have bits to spare).

e_rem_pio2f.c:
The bogus comment in e_rem_pio2.c was copied and the code was changed
to be bug-for-bug compatible with it, except the limit was made 90
ulps smaller than necessary.  The approximation to pi/2 was not
modified except for discarding some of it.

The same rough error analysis that justifies the limit of 2**20pi/2
for double precision only justifies a limit of 2**18pi/2 for float
precision.  We depended on exhaustive testing to check the magic numbers
for float precision.  More exaustive testing shows that we can go up
to 2**28pi/2 using a 53+25 bit approximation to pi/2 for float precision,
with a the maximum error for cosf() and sinf() unchanged at 0.5009
ulps despite the maximum error in rem_pio2f being ~0.25 ulps.  Implement
this.
2008-02-28 16:22:36 +00:00
bde
f77d7dfd70 Inline __ieee754__rem_pio2f(). On amd64 (A64) and i386 (A64), this
gives an average speedup of about 12 cycles or 17% for
9pi/4 < |x| <= 2**19pi/2 and a smaller speedup for larger x, and a
small speeddown for |x| <= 9pi/4 (only 1-2 cycles average, but that
is 4%).

Inlining this is less likely to bust caches than inlining the float
version since it is much smaller (about 220 bytes text and rodata) and
has many fewer branches.  However, the float version was already large
due to its manual inlining of the branches and also the polynomial
evaluations.
2008-02-25 22:19:17 +00:00
bde
49cb35343e Use a temporary array instead of the arg array y[] for calling
__kernel_rem_pio2().  This simplifies analysis of aliasing and thus
results in better code for the usual case where __kernel_rem_pio2()
is not called.  In particular, when __ieee854_rem_pio2[f]() is inlined,
it normally results in y[] being returned in registers.  I couldn't
get this to work using the restrict qualifier.

In float precision, this saves 2-3% in most cases on amd64 and i386
(A64) despite it not being inlined in float precision yet.  In double
precision, this has high variance, with an average gain of 2% for
amd64 and 0.7% for i386 (but a much larger gain for usual cases) and
some losses.
2008-02-25 18:28:58 +00:00
bde
83268c5f08 Change __ieee754_rem_pio2f() to return double instead of float so that
this function and its callers cosf(), sinf() and tanf() don't waste time
converting values from doubles to floats and back for |x| > 9pi/4.
All these functions were optimized a few years ago to mostly use doubles
internally and across the __kernel*() interfaces but not across the
__ieee754_rem_pio2f() interface.

This saves about 40 cycles in cosf(), sinf() and tanf() for |x| > 9pi/4
on amd64 (A64), and about 20 cycles on i386 (A64) (except for cosf()
and sinf() in the upper range).  40 cycles is about 35% for |x| < 9pi/4
<= 2**19pi/2 and about 5% for |x| > 2**19pi/2.  The saving is much
larger on amd64 than on i386 since the conversions are not easy to
optimize except on i386 where some of them are automatic and others
are optimized invalidly.  amd64 is still about 10% slower in cosf()
and tanf() in the lower range due to conversion overhead.

This also gives a tiny speedup for |x| <= 9pi/4 on amd64 (by simplifying
the code).  It also avoids compiler bugs and/or additional slowness
in the conversions on (not yet supported) machines where double_t !=
double.
2008-02-25 13:33:20 +00:00