read the same register back. It can cause hangs or machine
checks in certain cases. One particular case is with bge(4)
when a reset is initiated for the controller.
MFC after: 1 month
spaces were 1 too large. This resulted in the rman list not being
sorted correctly, and USB ports not being discovered on older
TiBooks.
Detective work by: Andreas Tobler <toa at pop dot agri dot ch>
e.g. at the loader:
set hint.pcib.1.skipslot=26
This allows undocumented and problematic hardware on some systems
to be ignored, for instance, the USB keyboard/mouse that shows up
on a 12" albook that doesn't exist nor do anything other than eat up
the syscons keyboard. Another one is the unused USB cell in the old
366MHz iBook that locks up the machine when probed.
In a way this is temporary, since there are better fixes for the
above problems, but will be useful in the meantime by allowing
a keyboard to be used to help debug said fixes :)
- while here remove some trailing white space
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
- Remove __RMAN_RESORUCE_VISIBLE again. It's no longer required either
because of the above change or because struct rman is no longer hidden.
Reviewed by: grehan
Tested by: cross-compile on i386
not ~1, but the call has been switched over to bus_alloc_resource_any()
which has the same effect.
Submitted by: Suleiman Souhlal <refugee@segfaulted.com>
- use correct rid when allocating PCI mem resource
- ATA taskfile registers are indeed spaced 0x10 apart just like
the Macio ATA cell. Adjust offsets in ATA channel struct.
Tested by: Suleiman Souhlal <ssouhlal@vt.edu>
the MacIO chip and PSIM's IOBus. Bus-specific drivers should
use the identify method to attach themselves to nexus so
interrupt can be allocated before the h/w is probed. The
'early attach' routine in openpic is used for this stage
of boot. When h/w is probed, the openpic can be attached
properly. It will enable interrupts allocated prior to
this.