might have been mmapped, and if so, passing the pointer to free() is
really not a good idea.
[ In the next millenium, when I've taken over the world, I'm going
to ban 8 character tabs. You've been warned. ]
Always use mmap() for default-size stack allocation. Use MAP_ANON instead
of MAP_STACK on the alpha architecture.
Reduce the amount of code executed while owning _gc_mutex during stack
allocation.
Cache discarded default thread stacks for use in subsequent thread creations.
Create a red zone at the end of each stack (including the initial thread
stack), with the hope of causing a segfault if a stack overflows.
To activate these modifications, add -D_PTHREAD_GSTACK to CFLAGS in
src/lib/libc_r/Makefile. Since the modifications depend on the VM_STACK
kernel option, I'm not sure how to safely use growable stacks by default.
Testing, as well as algorithmic and stylistic comments are welcome.
o The polling mechanism for I/O readiness was changed from
select() to poll(). In additon, a wrapped version of poll()
is now provided.
o The wrapped select routine now converts each fd_set to a
poll array so that the thread scheduler doesn't have to
perform a bitwise search for selected fds each time file
descriptors are polled for I/O readiness.
o The thread scheduler was modified to use a new queue (_workq)
for threads that need work. Threads waiting for I/O readiness
and spinblocks are added to the work queue in addition to the
waiting queue. This reduces the time spent forming/searching
the array of file descriptors being polled.
o The waiting queue (_waitingq) is now maintained in order of
thread wakeup time. This allows the thread scheduler to
find the nearest wakeup time by looking at the first thread
in the queue instead of searching the entire queue.
o Removed file descriptor locking for select/poll routines. An
application should not rely on the threads library for providing
this locking; if necessary, the application should use mutexes
to protect selecting/polling of file descriptors.
o Retrieve and use the kernel clock rate/resolution at startup
instead of hardcoding the clock resolution to 10 msec (tested
with kernel running at 1000 HZ).
o All queues have been changed to use queue.h macros. These
include the queues of all threads, dead threads, and threads
waiting for file descriptor locks.
o Added reinitialization of the GC mutex and condition variable
after a fork. Also prevented reallocation of the ready queue
after a fork.
o Prevented the wrapped close routine from closing the thread
kernel pipes.
o Initialized file descriptor table for stdio entries at thread
init.
o Provided additional flags to indicate to what queues threads
belong.
o Moved TAILQ initialization for statically allocated mutex and
condition variables to after the spinlock.
o Added dispatching of signals to pthread_kill. Removing the
dispatching of signals from thread activation broke sigsuspend
when pthread_kill was used to send a signal to a thread.
o Temporarily set the state of a thread to PS_SUSPENDED when it
is first created and placed in the list of threads so that it
will not be accidentally scheduled before becoming a member
of one of the scheduling queues.
o Change the signal handler to queue signals to the thread kernel
pipe if the scheduling queues are protected. When scheduling
queues are unprotected, signals are then dequeued and handled.
o Ensured that all installed signal handlers block the scheduling
signal and that the scheduling signal handler blocks all
other signals. This ensures that the signal handler is only
interruptible for and by non-scheduling signals. An atomic
lock is used to decide which instance of the signal handler
will handle pending signals.
o Removed _lock_thread_list and _unlock_thread_list as they are
no longer used to protect the thread list.
o Added missing RCS IDs to modified files.
o Added checks for appropriate queue membership and activity when
adding, removing, and searching the scheduling queues. These
checks add very little overhead and are enabled when compiled
with _PTHREADS_INVARIANTS defined. Suggested and implemented
by Tor Egge with some modification by me.
o Close a race condition in uthread_close. (Tor Egge)
o Protect the scheduling queues while modifying them in
pthread_cond_signal and _thread_fd_unlock. (Tor Egge)
o Ensure that when a thread gets a mutex, the mutex is on that
threads list of owned mutexes. (Tor Egge)
o Set the kernel-in-scheduler flag in _thread_kern_sched_state
and _thread_kern_sched_state_unlock to prevent a scheduling
signal from calling the scheduler again. (Tor Egge)
o Don't use TAILQ_FOREACH macro while searching the waiting
queue for threads in a sigwait state, because a change of
state destroys the TAILQ link. It is actually safe to do
so, though, because once a sigwaiting thread is found, the
loop ends and the function returns. (Tor Egge)
o When dispatching signals to threads, make the thread inherit
the signal deferral flag of the currently running thread.
(Tor Egge)
Submitted by: Daniel Eischen <eischen@vigrid.com> and
Tor Egge <Tor.Egge@fast.no>
o Runnable threads are now maintained in priority queues. The
implementation requires two things:
1.) The priority queues must be protected during insertion
and removal of threads. Since the kernel scheduler
must modify the priority queues, a spinlock for
protection cannot be used. The functions
_thread_kern_sched_defer() and _thread_kern_sched_undefer()
were added to {un}defer kernel scheduler activation.
2.) A thread (active) priority change can be performed only
when the thread is removed from the priority queue. The
implementation uses a threads active priority when
inserting it into the queue.
A by-product is that thread switches are much faster. A
separate queue is used for waiting and/or blocked threads,
and it is searched at most 2 times in the kernel scheduler
when there are active threads. It should be possible to
reduce this to once by combining polling of threads waiting
on I/O with the loop that looks for timed out threads and
the minimum timeout value.
o Functions to defer kernel scheduler activation were added. These
are _thread_kern_sched_defer() and _thread_kern_sched_undefer()
and may be called recursively. These routines do not block the
scheduling signal, but latch its occurrence. The signal handler
will not call the kernel scheduler when the running thread has
deferred scheduling, but it will be called when running thread
undefers scheduling.
o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the
POSIX routines required by this should now be implemented.
One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required
to be defined by including pthread.h. These defines are currently
in sched.h. I modified pthread.h to include sched.h but don't
know if this is the proper thing to do.
o Added support for priority protection and inheritence mutexes.
This allows definition of _POSIX_THREAD_PRIO_PROTECT and
_POSIX_THREAD_PRIO_INHERIT.
o Added additional error checks required by POSIX for mutexes and
condition variables.
o Provided a wrapper for sigpending which is marked as a hidden
syscall.
o Added a non-portable function as a debugging aid to allow an
application to monitor thread context switches. An application
can install a routine that gets called everytime a thread
(explicitly created by the application) gets context switched.
The routine gets passed the pthread IDs of the threads that are
being switched in and out.
Submitted by: Dan Eischen <eischen@vigrid.com>
Changes by me:
o Added a PS_SPINBLOCK state to deal with the priority inversion
problem most often (I think) seen by threads calling malloc/free/realloc.
o Dispatch signals to the running thread directly rather than at a
context switch to avoid the situation where the switch never occurs.
make pthread_yield() more reliable,
threads always (I hope) preempted at least every 0.1 sec, as intended.
PR: bin/7744
Submitted by: "Richard Seaman, Jr." <dick@tar.com>
the thread kernel into a garbage collector thread which is started when
the fisrt thread is created (other than the initial thread). This
removes the window of opportunity where a context switch will cause a
thread that has locked the malloc spinlock, to enter the thread kernel,
find there is a dead thread and try to free memory, therefore trying
to lock the malloc spinlock against itself.
The garbage collector thread acts just like any other thread, so
instead of having a spinlock to control accesses to the dead thread
list, it uses a mutex and a condition variable so that it can happily
wait to be signalled when a thread exists.
launching an application into space when someone tries to debug it.
The dead thread list now has it's own link pointer, so use that when
reporting the grateful dead.
- Add support of a thread being listed in the dead thread list as well
as the thread list.
- Add a new thread state to make sigwait work properly. (Submitted by
Daniel M. Eischen <eischen@vigrid.com>)
- Add global variable for the garbage collector mutex and condition
variable.
- Delete a couple of prototypes that are no longer required.
- Add a prototype for the garbage collector thread.
to fork. It is difficult to do real vfork in libc_r, since almost every
operation with file descriptsor changes _thread_fd_table and friends.
popen(3) works much better with this change.
are started instead of init (pid = 1). This allows an embedded
implementation quite like VxWorks, with (possibly) a single threaded
program running instead of init. The neat thing is that the same threaded
process can run in a multi-user workstation environment too.