This involves significant changes to the mps(4) driver, but is not a
complete rewrite.
Some of the changes in this version of the driver:
- Integrated RAID (IR) support.
- Support for WarpDrive controllers.
- Support for SCSI protection information (EEDP).
- Support for TLR (Transport Level Retries), needed for tape drives.
- Improved error recovery code.
- ioctl interface compatible with LSI utilities.
mps.4: Update the mps(4) driver man page somewhat for the driver
changes. The list of supported hardware still needs to be
updated to reflect the full list of supported cards.
conf/files: Add the new driver files.
mps/mpi/*: Updated version of the MPI header files, with a BSD style
copyright.
mps/*: See above for a description of the new driver features.
modules/mps/Makefile:
Add the new mps(4) driver files.
Submitted by: Kashyap Desai <Kashyap.Desai@lsi.com>
Reviewed by: ken
MFC after: 1 week
64bit and 32bit ABIs. As a side-effect, it enables AVX on capable
CPUs.
In particular:
- Query the CPU support for XSAVE, list of the supported extensions
and the required size of FPU save area. The hw.use_xsave tunable is
provided for disabling XSAVE, and hw.xsave_mask may be used to
select the enabled extensions.
- Remove the FPU save area from PCB and dynamically allocate the
(run-time sized) user save area on the top of the kernel stack,
right above the PCB. Reorganize the thread0 PCB initialization to
postpone it after BSP is queried for save area size.
- The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as
well. FPU state is only useful for suspend, where it is saved in
dynamically allocated suspfpusave area.
- Use XSAVE and XRSTOR to save/restore FPU state, if supported and
enabled.
- Define new mcontext_t flag _MC_HASFPXSTATE, indicating that
mcontext_t has a valid pointer to out-of-struct extended FPU
state. Signal handlers are supplied with stack-allocated fpu
state. The sigreturn(2) and setcontext(2) syscall honour the flag,
allowing the signal handlers to inspect and manipilate extended
state in the interrupted context.
- The getcontext(2) never returns extended state, since there is no
place in the fixed-sized mcontext_t to place variable-sized save
area. And, since mcontext_t is embedded into ucontext_t, makes it
impossible to fix in a reasonable way. Instead of extending
getcontext(2) syscall, provide a sysarch(2) facility to query
extended FPU state.
- Add ptrace(2) support for getting and setting extended state; while
there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries.
- Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to
consumers, making it opaque. Internally, struct fpu_kern_ctx now
contains a space for the extended state. Convert in-kernel consumers
of fpu_kern KPI both on i386 and amd64.
First version of the support for AVX was submitted by Tim Bird
<tim.bird am sony com> on behalf of Sony. This version was written
from scratch.
Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org>
MFC after: 1 month
versions derived from /usr/ports/audio/oss.
The particular headers used were taken from the
attic/drv/oss_allegro directory and are mostly identical
to the previous files.
The Maestro3 driver is now free from the GPL.
NOTE: due to lack of testers this driver is being
considered for deprecation and removal.
PR: kern/153920
Approved by: jhb (mentor)
MFC after: 2 weeks
- Huge old hdac driver was split into three independent pieces: HDA
controller driver (hdac), HDA CODEC driver (hdacc) and HDA sudio function
driver (hdaa).
- Support for multichannel recording was added. Now, as specification
defines, driver checks input associations for pins with sequence numbers
14 and 15, and if found (usually) -- works as before, mixing signals
together. If it doesn't, it configures input association as multichannel.
- Signal tracer was improved to look for cases where several DACs/ADCs in
CODEC can work with the same audio signal. If such case found, driver
registers additional playback/record stream (channel) for the pcm device.
- New controller streams reservation mechanism was implemented. That
allows to have more pcm devices then streams supported by the controller
(usually 4 in each direction). Now it limits only number of simultaneously
transferred audio streams, that is rarely reachable and properly reported
if happens.
- Codec pins and GPIO signals configuration was exported via set of
writable sysctls. Another sysctl dev.hdaa.X.reconfig allows to trigger
driver reconfiguration in run-time.
- Driver now decodes pins location and connector type names. In some cases
it allows to hint user where on the system case connectors, related to the
pcm device, are located. Number of channels supported by pcm device,
reported now (if it is not 2), should also make search easier.
- Added workaround for digital mic on some Asus laptops/netbooks.
MFC after: 2 months
Sponsored by: iXsystems, Inc.
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
This uses the emuxkireg.h already used in the emu10k1
snd driver. Special thanks go to Alexander Motin as
he was able to find some errors and reverse engineer
some wrong values in the emuxkireg header.
The emu10kx driver is now free from the GPL.
PR: 153901
Tested by: mav, joel
Approved by: jhb (mentor)
MFC after: 2 weeks
seem to be used elsewhere.
Since UFS_ACL is enabled by default for GENERIC kernels, this shouldn't
break anything - but please beat me to fix things if it does.
This reduces the footprint of the kernel on small embedded systems
(think <1MB flash for the compressed kernel image) just enough to
actually fit.
This brings in the emuxkireg.h from NetBSD (dev/pci) which
is used for the same purpose but is smaller. The emu10k1
is now free from the GPL.
PR: 153901
Obtained from: NetBSD
Approved by: core (mentor implicit)
MFC after: 2 weeks
It was only used by ufs and ext2 and I have really strong doubts that
there are other pieces of code that also use this function. If it turns
out that external drivers use this code as well, I'd be happy to migrate
or revert.
Bump __FreeBSD_version while there.
It seems two of the file system drivers we have in the tree, namely ufs
and ext3, use a function called `skpc()'. The meaning of this function
does not seem to be documented in FreeBSD, but it turns out one needs to
be a VAX programmer to understand what it does.
SPKC is an instruction on the VAX that does the opposite of memchr(). It
searches for the non-equal character. Add a new function called
memcchr() to the tree that has the following advantages over skpc():
- It has a name that makes more sense than skpc(). Just like strcspn()
matches the complement of strspn(), memcchr() is the complement of
memchr().
- It is faster than skpc(). Similar to our strlen() in libc, it compares
entire words, instead of single bytes. It seems that for this routine
this yields a sixfold performance increase on amd64.
- It has a man page.
All of these are harmless, and are in fact used to shut up warnings from
lint.
While here, remove -Wno-missing-prototypes from the xfs module
Makefile, as I could not reproduce those warnings either with gcc or
clang.
MFC after: 1 week
with clang. There are several macros in these files that return values,
and in some cases nothing is done with them, but it is completely
harmless. For some other files, also disable -Wconstant-conversion,
since that triggers a false positive with the DMA_BIT_MASK() macro.
MFC after: 1 week
with clang:
sys/dev/ce/tau32-ddk.c:1228:37: warning: implicit truncation from 'int' to bitfield changes value from 65532 to 8188 [-Wconstant-conversion]
Since this file is obfuscated C, we can never determine (in a sane way,
at least :) if this points to a real problem or not. The driver has
been in the tree for more than five years, so it most likely isn't.
MFC after: 1 week
kernel builds. All the instances of this warning in our tree are
completely harmless, and many people seem to like adding extra
parentheses to make precedence clearer.
MFC after: 1 week
builds. All the instances of this warning in our tree are completely
harmless. (Most of the empty bodies look to be used simply as reminder
for the developer to add something later.)
While here, assign to CWARNEXTRA with ?=, so it can be overridden
easily, if needed.
MFC after: 1 week
CWARNEXTRA variable, which gets included into the initial CWARNFLAGS
setting. This makes it easier to override CWARNFLAGS with completely
custom settings (including enabling any disabled warnings).
Reminded by: arundel
MFC after: 1 week
might be useful in some cases, but which are not severe enough to error
out the whole kernel build. Display them anyway, so there is at least
some incentive to fix them eventually.
Start with -Wtautological-compare warnings. These usually occur when
people check if unsigned quantities are negative, or similar cases. To
clean these up would be painful, and might give problems if the base
type which is compared against changes to signed later on.
MFC after: 1 week
as it gets the following warning:
sys/dev/asr/asr.c:1836:29: warning: array index of '58' indexes past the end of an array (that contains 1 element) [-Warray-bounds]
while ((len > 0) && (sg < &((PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
^
sys/dev/asr/i2omsg.h:934:8: note: array 'Simple' declared here
I2O_SGE_SIMPLE_ELEMENT Simple[1];
^
This is a false positive, since I2O_SG_ELEMENT::Simple is not declared
as a C99 flexible array member, but in the old (but more portable) way.
At run-time, the proper number of array elements will hopefully have
been allocated.
MFC after: 1 week
there are some places in the kernel where fixing them is too disruptive,
or where there is a false positive.
In this case, disable -Wconstant-conversion for two aic7xxx-related
files, as they get the following warning on i386 (and possibly on other
32-bit arches):
sys/dev/aic7xxx/ahc_pci.c:112:10: warning: implicit conversion from 'long long' to 'bus_addr_t' (aka 'unsigned int') changes value from 549755813887 to 4294967295 [-Wconstant-conversion]
? 0x7FFFFFFFFFLL
~~^~~~~~~~~~~~~~
This is a false positive, since the code only passes the 0x7FFFFFFFFFLL
argument, if sizeof(bus_addr_t) is larger than 4 (e.g. on 64 bit arches,
or when PAE is enabled on i386). The code could be refactored to do
compile-time checks, but that is more disruptive.
MFC after: 1 week
defined based on WITH/WITHOUT_CTF settings, default is WITHOUT_CTF,
NO_CTF overrides WITH_CTF (used by Makefile.inc1)
- CTFCONVERT_CMD/NORMAL_CTFCONVERT are now defined to empty string
if make(1) can handle empty commands
- CTFCONVERT_CMD=... is a hack (should be defined to empty string instead):
make(1) should be taught to ignore empty commands silently in compat mode
(as it does in !compat mode, GNU make also silently ignores empty commands)
and to skip printing empty commands in !compat mode
- config(8) should generate ${NORMAL_CTFCONVERT} invocation without '@':
this will allow to simplify kern.pre.mk even more and lessen the number
of shell invocations during kernel build when CTF is turned off
- WITH_CTF can now be converted to usual MK_CTF=yes/no infrastructure
Pointy hat to: fjoe [1]