Status and Control register at port 0x61.
Be more conservative about "catching up" callouts that were supposed
to fire in the past by skipping an interrupt if it was
scheduled too far in the past.
Restore the PIT ACPI DSDT entries and add an entry for NMISC too.
Approved by: neel (co-mentor)
'struct vmxctx'. It is preserved on the host stack across a guest entry
and exit and just restoring the host's '%rsp' is sufficient.
Pointed out by: grehan@
- remove redundant code
- remove erroneous setting of the error return
in vmmdev_ioctl()
- use style(9) initialization
- in vmx_inject_pir(), document the race condition
that the final conditional statement was detecting,
Tested with both gcc and clang builds.
Reviewed by: neel
correct for the pirbase test (since I'd have thought we'd need to do
something even when the offset is 0 and that test looks like a
misguided attempt to not use an uninitialized variable), but it is at
least the same as today.
My PCI RID changes somehow got intermixed with my PCI ARI patch when I
committed it. I may have accidentally applied a patch to a non-clean
working tree. Revert everything while I figure out what went wrong.
Pointy hat to: rstone
from any context i.e., it is not required to be called from a vcpu thread. The
ioctl simply sets a state variable 'vm->suspend' to '1' and returns.
The vcpus inspect 'vm->suspend' in the run loop and if it is set to '1' the
vcpu breaks out of the loop with a reason of 'VM_EXITCODE_SUSPENDED'. The
suspend handler waits until all 'vm->active_cpus' have transitioned to
'vm->suspended_cpus' before returning to userspace.
Discussed with: grehan
blocked on it.
This is done by issuing a wakeup after clearing the 'vcpuid' from 'active_cpus'.
Also, use CPU_CLR_ATOMIC() to guarantee visibility of the updated 'active_cpus'
across all host cpus.
attributed if an ExtINT arrives during interrupt injection.
Also, fix a spurious interrupt if the PIC tries to raise an interrupt
before the outstanding one is accepted.
Finally, improve the PIC interrupt latency when another interrupt is
raised immediately after the outstanding one is accepted by creating a
vmexit rather than waiting for one to occur by happenstance.
Approved by: neel (co-mentor)
New ioctls VM_ISA_ASSERT_IRQ, VM_ISA_DEASSERT_IRQ and VM_ISA_PULSE_IRQ
can be used to manipulate the pic, and optionally the ioapic, pin state.
Reviewed by: jhb, neel
Approved by: neel (co-mentor)
being updated outside of the vcpu_lock(). The race is benign and could
potentially result in a missed notification about a pending interrupt to
a vcpu. The interrupt would not be lost but rather delayed until the next
VM exit.
The vcpu's hostcpu is now updated concurrently with the vcpu state change.
When the vcpu transitions to the RUNNING state the hostcpu is set to 'curcpu'.
It is set to 'NOCPU' in all other cases.
Reviewed by: grehan
triggers a VM exit with the exit reason of an external interrupt but
without a valid interrupt set in the exit interrupt information.
Tested by: Michael Dexter
Reviewed by: neel
MFC after: 1 week
processor-specific VMCS or VMCB. The pending exception will be delivered right
before entering the guest.
The order of event injection into the guest is:
- hardware exception
- NMI
- maskable interrupt
In the Intel VT-x case, a pending NMI or interrupt will enable the interrupt
window-exiting and inject it as soon as possible after the hardware exception
is injected. Also since interrupts are inherently asynchronous, injecting
them after the hardware exception should not affect correctness from the
guest perspective.
Rename the unused ioctl VM_INJECT_EVENT to VM_INJECT_EXCEPTION and restrict
it to only deliver x86 hardware exceptions. This new ioctl is now used to
inject a protection fault when the guest accesses an unimplemented MSR.
Discussed with: grehan, jhb
Reviewed by: jhb
This brings in the "-w" option from bhyve to ignore unknown MSRs.
It will make debugging Linux guests a bit easier.
Suggested by: Willem Jan Withagen (wjw at digiware nl)
The vlapic.ops handler 'enable_x2apic_mode' is called when the vlapic mode
is switched to x2APIC. The VT-x implementation of this handler turns off the
APIC-access virtualization and enables the x2APIC virtualization in the VMCS.
The x2APIC virtualization is done by allowing guest read access to a subset
of MSRs in the x2APIC range. In non-root operation the processor will satisfy
an 'rdmsr' access to these MSRs by reading from the virtual APIC page instead.
The guest is also given write access to TPR, EOI and SELF_IPI MSRs which
get special treatment in non-root operation. This is documented in the
Intel SDM section titled "Virtualizing MSR-Based APIC Accesses".
Enforce that APIC-write and APIC-access VM-exits are handled only if
APIC-access virtualization is enabled. The one exception to this is
SELF_IPI virtualization which may result in an APIC-write VM-exit.
simplify the implementation of the x2APIC virtualization assist in VT-x.
Prior to this change the vlapic allowed the guest to change its mode from
xAPIC to x2APIC. We don't allow that any more and the vlapic mode is locked
when the virtual machine is created. This is not very constraining because
operating systems already have to deal with BIOS setting up the APIC in
x2APIC mode at boot.
Fix a bug in the CPUID emulation where the x2APIC capability was leaking
from the host to the guest.
Ignore MMIO reads and writes to the vlapic in x2APIC mode. Similarly, ignore
MSR accesses to the vlapic when it is in xAPIC mode.
The default configuration of the vlapic is xAPIC. The "-x" option to bhyve(8)
can be used to change the mode to x2APIC instead.
Discussed with: grehan@
emulated instructions.
- Add helper routines to inject interrupt information for a hardware
exception from the VM exit callback routines.
- Use the new routines to inject GP and UD exceptions for invalid
operations when emulating the xsetbv instruction.
- Don't directly manipulate the entry interrupt info when a user event
is injected. Instead, store the event info in the vmx state and
only apply it during a VM entry if a hardware exception or NMI is
not already pending.
- While here, use HANDLED/UNHANDLED instead of 1/0 in a couple of
routines.
Reviewed by: neel
in x2apic mode. Reads to this MSR are currently ignored but should cause a
general proctection exception to be injected into the vcpu.
All accesses to the corresponding offset in xAPIC mode are ignored.
Also, do not panic the host if there is mismatch between the trigger mode
programmed in the TMR and the actual interrupt being delivered. Instead the
anomaly is logged to aid debugging and to prevent a misbehaving guest from
panicking the host.
This is necessary because if the vlapic is configured in x2apic mode the
vioapic_process_eoi() function is called inside the critical section
established by vm_run().
XSAVE-enabled features like AVX.
- Store a per-cpu guest xcr0 register. When switching to the guest FPU
state, switch to the guest xcr0 value. Note that the guest FPU state is
saved and restored using the host's xcr0 value and xcr0 is saved/restored
"inside" of saving/restoring the guest FPU state.
- Handle VM exits for the xsetbv instruction by updating the guest xcr0.
- Expose the XSAVE feature to the guest only if the host has enabled XSAVE,
and only advertise XSAVE features enabled by the host to the guest.
This ensures that the guest will only adjust FPU state that is a subset
of the guest FPU state saved and restored by the host.
Reviewed by: grehan
If a VM-exit is caused by an NMI then "blocking by NMI" is in effect on the
CPU when the VM-exit is completed. No more NMIs will be recognized until
the execution of an "iret".
Prior to this change the NMI handler was dispatched via a software interrupt
with interrupts enabled. This meant that an interrupt could be recognized
by the processor before the NMI handler completed its execution. The "iret"
issued by the interrupt handler would then cause the "blocking by NMI" to
be cleared prematurely.
This is now fixed by handling the NMI with interrupts disabled in addition
to "blocking by NMI" already established by the VM-exit.
- Similar to the hack for bootinfo32.c in userboot, define
_MACHINE_ELF_WANT_32BIT in the load_elf32 file handlers in userboot.
This allows userboot to load 32-bit kernels and modules.
- Copy the SMAP generation code out of bootinfo64.c and into its own
file so it can be shared with bootinfo32.c to pass an SMAP to the i386
kernel.
- Use uint32_t instead of u_long when aligning module metadata in
bootinfo32.c in userboot, as otherwise the metadata used 64-bit
alignment which corrupted the layout.
- Populate the basemem and extmem members of the bootinfo struct passed
to 32-bit kernels.
- Fix the 32-bit stack in userboot to start at the top of the stack
instead of the bottom so that there is room to grow before the
kernel switches to its own stack.
- Push a fake return address onto the 32-bit stack in addition to the
arguments normally passed to exec() in the loader. This return
address is needed to convince recover_bootinfo() in the 32-bit
locore code that it is being invoked from a "new" boot block.
- Add a routine to libvmmapi to setup a 32-bit flat mode register state
including a GDT and TSS that is able to start the i386 kernel and
update bhyveload to use it when booting an i386 kernel.
- Use the guest register state to determine the CPU's current instruction
mode (32-bit vs 64-bit) and paging mode (flat, 32-bit, PAE, or long
mode) in the instruction emulation code. Update the gla2gpa() routine
used when fetching instructions to handle flat mode, 32-bit paging, and
PAE paging in addition to long mode paging. Don't look for a REX
prefix when the CPU is in 32-bit mode, and use the detected mode to
enable the existing 32-bit mode code when decoding the mod r/m byte.
Reviewed by: grehan, neel
MFC after: 1 month
- Convert VMM_CTR to VCPU_CTR KTR macros
- Special handling of halt, save rflags for VMM layer to emulate
halt for vcpu(sleep to be awakened by interrupt or stop it)
- Cleanup of RVI exit handling code
Submitted by: Anish Gupta (akgupt3@gmail.com)
Reviewed by: grehan
Prior to this change the cached value of 'pm_eptgen' was tracked per-vcpu
and per-hostcpu. In the degenerate case where 'N' vcpus were sharing
a single hostcpu this could result in 'N - 1' unnecessary TLB invalidations.
Since an 'invept' invalidates mappings for all VPIDs the first 'invept'
is sufficient.
Fix this by moving the 'eptgen[MAXCPU]' array from 'vmxctx' to 'struct vmx'.
If it is known that an 'invept' is going to be done before entering the
guest then it is safe to skip the 'invvpid'. The stat VPU_INVVPID_SAVED
counts the number of 'invvpid' invalidations that were avoided because
they were subsumed by an 'invept'.
Discussed with: grehan
the virtio backends.
- Add a new ioctl to export the count of pins on the I/O APIC from vmm
to the hypervisor.
- Use pins on the I/O APIC >= 16 for PCI interrupts leaving 0-15 for
ISA interrupts.
- Populate the MP Table with I/O interrupt entries for any PCI INTx
interrupts.
- Create a _PRT table under the PCI root bridge in ACPI to route any
PCI INTx interrupts appropriately.
- Track which INTx interrupts are in use per-slot so that functions
that share a slot attempt to distribute their INTx interrupts across
the four available pins.
- Implicitly mask INTx interrupts if either MSI or MSI-X is enabled
and when the INTx DIS bit is set in a function's PCI command register.
Either assert or deassert the associated I/O APIC pin when the
state of one of those conditions changes.
- Add INTx support to the virtio backends.
- Always advertise the MSI capability in the virtio backends.
Submitted by: neel (7)
Reviewed by: neel
MFC after: 2 weeks
The VMCS field EOI_bitmap[] is an array of 256 bits - one for each vector.
If a bit is set to '1' in the EOI_bitmap[] then the processor will trigger
an EOI-induced VM-exit when it is doing EOI virtualization.
The EOI-induced VM-exit results in the EOI being forwarded to the vioapic
so that level triggered interrupts can be properly handled.
Tested by: Anish Gupta (akgupt3@gmail.com)
injected into the vcpu but the VM-entry interruption information field
already has the valid bit set.
Pointed out by: David Reed (david.reed@tidalscale.com)
via a software interrupt.
This is safe to do because the logical processor is already cognizant of the
NMI and further NMIs are blocked until the host's NMI handler executes "iret".
the Guest Interruptibility-state field. However, there isn't any way to
figure out which processors have this requirement.
So, inject a pending NMI only if NMI_BLOCKING, MOVSS_BLOCKING, STI_BLOCKING
are all clear. If any of these bits are set then enable "NMI window exiting"
and inject the NMI in the VM-exit handler.
in the Guest Interruptibility-state VMCS field.
If we fail to do this then a subsequent VM-entry will fail because it is an
error to inject an NMI into the guest while "NMI Blocking" is turned on. This
is described in "Checks on Guest Non-Register State" in the Intel SDM.
Submitted by: David Reed (david.reed@tidalscale.com)
can be initiated in the context of a vcpu thread or from the bhyve(8) control
process.
The first use of this functionality is to update the vlapic trigger-mode
register when the IOAPIC pin configuration is changed.
Prior to this change we would update the TMR in the virtual-APIC page at
the time of interrupt delivery. But this doesn't work with Posted Interrupts
because there is no way to program the EOI_exit_bitmap[] in the VMCS of
the target at the time of interrupt delivery.
Discussed with: grehan@
inject interrupts into the guest without causing a VM-exit.
This feature can be disabled by setting the tunable "hw.vmm.vmx.use_apic_pir"
to "0".
The following sysctls provide information about this feature:
- hw.vmm.vmx.posted_interrupts (0 if disabled, 1 if enabled)
- hw.vmm.vmx.posted_interrupt_vector (vector number used for vcpu notification)
Tested on a Intel Xeon E5-2620v2 courtesy of Allan Jude at ScaleEngine.
This control is needed to enable "Posted Interrupts" and is present in all
the Intel VT-x implementations supported by bhyve so enable it as the default.
With this VM-exit control enabled the processor will acknowledge the APIC and
store the vector number in the "VM-Exit Interruption Information" field. We
now call the interrupt handler "by hand" through the IDT entry associated
with the vector.
hardware. It is possible to turn this feature off and fall back to software
emulation of the APIC by setting the tunable hw.vmm.vmx.use_apic_vid to 0.
We now start handling two new types of VM-exits:
APIC-access: This is a fault-like VM-exit and is triggered when the APIC
register access is not accelerated (e.g. apic timer CCR). In response to
this we do emulate the instruction that triggered the APIC-access exit.
APIC-write: This is a trap-like VM-exit which does not require any instruction
emulation but it does require the hypervisor to emulate the access to the
specified register (e.g. icrlo register).
Introduce 'vlapic_ops' which are function pointers to vector the various
vlapic operations into processor-dependent code. The 'Virtual Interrupt
Delivery' feature installs 'ops' for setting the IRR bits in the virtual
APIC page and to return whether any interrupts are pending for this vcpu.
Tested on an "Intel Xeon E5-2620 v2" courtesy of Allan Jude at ScaleEngine.
Keep a copy of the 'rip' and the 'exit_reason' and use that when calling
vmx_exit_trace(). This is because both the 'rip' and 'exit_reason' can
be changed by 'vmx_exit_process()' and can lead to very misleading traces.
the vcpu should be kicked to process a pending interrupt. This will be useful
in the implementation of the Posted Interrupt APICv feature.
Change the return value of 'vlapic_pending_intr()' to indicate whether or not
an interrupt is available to be delivered to the vcpu depending on the value
of the PPR.
Add KTR tracepoints to debug guest IPI delivery.
'vmx_vminit()' that does customization.
This makes it easier to turn on optional features (e.g. APICv) without
having to keep adding new parameters to 'vmcs_set_defaults()'.
Reviewed by: grehan@
guest disables the HPET.
The HPET timer interrupt is triggered from the callout handler associated with
the timer. It is possible for the callout handler to be delayed before it gets
a chance to execute. If the guest disables the HPET during this window then the
handler never gets a chance to execute and the timer interrupt is lost.
This is now fixed by injecting a timer interrupt into the guest if the callout
time is detected to be in the past when the HPET is disabled.
hides the setjmp/longjmp semantics of VM enter/exit. vmx_enter_guest() is used
to enter guest context and vmx_exit_guest() is used to transition back into
host context.
Fix a longstanding race where a vcpu interrupt notification might be ignored
if it happens after vmx_inject_interrupts() but before host interrupts are
disabled in vmx_resume/vmx_launch. We now called vmx_inject_interrupts() with
host interrupts disabled to prevent this.
Suggested by: grehan@
The handler is now called after the register value is updated in the virtual
APIC page. This will make it easier to handle APIC-write VM-exits with APIC
register virtualization turned on.
This also implies that we need to keep a snapshot of the last value written
to a LVT register. We can no longer rely on the LVT registers in the APIC
page to be "clean" because the guest can write anything to it before the
hypervisor has had a chance to sanitize it.
registers.
The handler is now called after the register value is updated in the virtual
APIC page. This will make it easier to handle APIC-write VM-exits with APIC
register virtualization turned on.
We can no longer rely on the value of 'icr_timer' on the APIC page
in the callout handler. With APIC register virtualization the value of
'icr_timer' will be updated by the processor in guest-context before an
APIC-write VM-exit.
Clear the 'delivery status' bit in the ICRLO register in the write handler.
With APIC register virtualization the write happens in guest-context and
we cannot prevent a (buggy) guest from setting this bit.
The handler is now called after the register value is updated in the virtual
APIC page. This will make it easier to handle APIC-write VM-exits with APIC
register virtualization turned on.
Additionally, mask all the LVT entries when the vlapic is software-disabled.
The handlers are now called after the register value is updated in the virtual
APIC page. This will make it easier to handle APIC-write VM-exits with APIC
register virtualization turned on.
Additionally, we need to ensure that the value of these registers is always
correctly reflected in the virtual APIC page, because there is no VM exit
when the guest reads these registers with APIC register virtualization.
emulation.
The vlapic initialization and cleanup is done via processor specific vmm_ops.
This will allow the VT-x/SVM modules to layer any hardware-assist for APIC
emulation or virtual interrupt delivery on top of the vlapic device model.
Add a parameter to 'vcpu_notify_event()' to distinguish between vlapic
interrupts versus other events (e.g. NMI). This provides an opportunity to
use hardware-assists like Posted Interrupts (VT-x) or doorbell MSR (SVM)
to deliver an interrupt to a guest without causing a VM-exit.
Get rid of lapic_pending_intr() and lapic_intr_accepted() and use the
vlapic_xxx() counterparts directly.
Associate an 'Apic Page' with each vcpu and reference it from the 'vlapic'.
The 'Apic Page' is intended to be referenced from the Intel VMCS as the
'virtual APIC page' or from the AMD VMCB as the 'vAPIC backing page'.
- Add a generic routine to trigger an LVT interrupt that supports both
fixed and NMI delivery modes.
- Add an ioctl and bhyvectl command to trigger local interrupts inside a
guest. In particular, a global NMI similar to that raised by SERR# or
PERR# can be simulated by asserting LINT1 on all vCPUs.
- Extend the LVT table in the vCPU local APIC to support CMCI.
- Flesh out the local APIC error reporting a bit to cache errors and
report them via ESR when ESR is written to. Add support for asserting
the error LVT when an error occurs. Raise illegal vector errors when
attempting to signal an invalid vector for an interrupt or when sending
an IPI.
- Ignore writes to reserved bits in LVT entries.
- Export table entries the MADT and MP Table advertising the stock x86
config of LINT0 set to ExtInt and LINT1 wired to NMI.
Reviewed by: neel (earlier version)
state before the requested state transition. This guarantees that there is
exactly one ioctl() operating on a vcpu at any point in time and prevents
unintended state transitions.
More details available here:
http://lists.freebsd.org/pipermail/freebsd-virtualization/2013-December/001825.html
Reviewed by: grehan
Reported by: Markiyan Kushnir (markiyan.kushnir at gmail.com)
MFC after: 3 days
The least significant 8 bits of 'pm_flags' are now used for the IPI vector
to use for nested page table TLB shootdown.
Previously we used IPI_AST to interrupt the host cpu which is functionally
correct but could lead to misleading interrupt counts for AST handler. The
AST handler was also doing a lot more than what is required for the nested
page table TLB shootdown (EOI and IRET).
- No emulation of A/D bits is required since AMD-V RVI
supports A/D bits.
- Enable pmap PT_RVI support(w/o PAT) which is required for
memory over-commit support.
- Other minor fixes:
* Make use of VMCB EXITINTINFO field. If a #VMEXIT happens while
delivering an interrupt, EXITINTINFO has all the details that bhyve
needs to inject the same interrupt.
* SVM h/w decode assist code was incomplete - removed for now.
* Some minor code clean-up (more coming).
Submitted by: Anish Gupta (akgupt3@gmail.com)
callers treat the MSI 'addr' and 'data' fields as opaque and also lets
bhyve implement multiple destination modes: physical, flat and clustered.
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
Reviewed by: grehan@
When the guest is bringing up the APs in the x2APIC mode a write to the
ICR register will now trigger a return to userspace with an exitcode of
VM_EXITCODE_SPINUP_AP. This gets SMP guests working again with x2APIC.
Change the vlapic timer lock to be a spinlock because the vlapic can be
accessed from within a critical section (vm run loop) when guest is using
x2apic mode.
Reviewed by: grehan@
This decouples the guest's 'hz' from the host's 'hz' setting. For e.g. it is
now possible to have a guest run at 'hz=1000' while the host is at 'hz=100'.
Discussed with: grehan@
Tested by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
vcpu and destroy its thread context. Also modify the 'HLT' processing to ignore
pending interrupts in the IRR if interrupts have been disabled by the guest.
The interrupt cannot be injected into the guest in any case so resuming it
is futile.
With this change "halt" from a Linux guest works correctly.
Reviewed by: grehan@
Tested by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
has outgrown its original name. Originally this function simply sent an IPI
to the host cpu that a vcpu was executing on but now it does a lot more than
just that.
Reviewed by: grehan@
shifts into the sign bit. Instead use (1U << 31) which gets the
expected result.
This fix is not ideal as it assumes a 32 bit int, but does fix the issue
for most cases.
A similar change was made in OpenBSD.
Discussed with: -arch, rdivacky
Reviewed by: cperciva
commit level triggered interrupts would work as long as the pin was not shared
among multiple interrupt sources.
The vlapic now keeps track of level triggered interrupts in the trigger mode
register and will forward the EOI for a level triggered interrupt to the
vioapic. The vioapic in turn uses the EOI to sample the level on the pin and
re-inject the vector if the pin is still asserted.
The vhpet is the first consumer of level triggered interrupts and advertises
that it can generate interrupts on pins 20 through 23 of the vioapic.
Discussed with: grehan@
bhyve supports a single timer block with 8 timers. The timers are all 32-bit
and capable of being operated in periodic mode. All timers support interrupt
delivery using MSI. Timers 0 and 1 also support legacy interrupt routing.
At the moment the timers are not connected to any ioapic pins but that will
be addressed in a subsequent commit.
This change is based on a patch from Tycho Nightingale (tycho.nightingale@pluribusnetworks.com).
to inject edge triggered legacy interrupts into the guest.
Start using the new API in device models that use edge triggered interrupts:
viz. the 8254 timer and the LPC/uart device emulation.
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
upcoming in-kernel device emulations like the HPET.
The ioctls VM_IOAPIC_ASSERT_IRQ and VM_IOAPIC_DEASSERT_IRQ are used to
manipulate the ioapic pin state.
Discussed with: grehan@
Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
in the kernel. This abstraction was redundant because the only device emulated
inside vmm.ko is the local apic and it is always at a fixed guest physical
address.
Discussed with: grehan
all vcpus belonging to a guest. This means that when different vcpus belonging
to the same guest are executing on the same host cpu there may be "leakage"
in the mappings created by one vcpu to another.
The proper fix for this is being worked on and will be committed shortly.
In the meantime workaround this bug by flushing the guest TLB entries on every
VM entry.
Submitted by: Anish Gupta (akgupt3@gmail.com)
'invpcid' instruction to the guest. Currently bhyve will try to enable this
capability unconditionally if it is available.
Consolidate code in bhyve to set the capabilities so it is no longer
duplicated in BSP and AP bringup.
Add a sysctl 'vm.pmap.invpcid_works' to display whether the 'invpcid'
instruction is available.
Reviewed by: grehan
MFC after: 3 days
hang on console output (due to a missing interrupt).
SVM does exit processing and then handles ASTPENDING which
overwrites the already handled SVM exit cause and corrupts
virtual machine state. For example, if the SVM exit was due to
an I/O port access but the main loop detected an ASTPENDING,
the exit would be processed as ASTPENDING and leave the
device (e.g. emulated UART) for that I/O port in bad state.
Submitted by: Anish Gupta (akgupt3@gmail.com)
Reviewed by: grehan
the 'vmmdev_mtx' in vmmdev_rw().
Rely on the 'si_threadcount' accounting to ensure that we never destroy the
VM device node while it has operations in progress (e.g. ioctl, mmap etc).
Reported by: grehan
Reviewed by: grehan
Make the amd64/pmap code aware of nested page table mappings used by bhyve
guests. This allows bhyve to associate each guest with its own vmspace and
deal with nested page faults in the context of that vmspace. This also
enables features like accessed/dirty bit tracking, swapping to disk and
transparent superpage promotions of guest memory.
Guest vmspace:
Each bhyve guest has a unique vmspace to represent the physical memory
allocated to the guest. Each memory segment allocated by the guest is
mapped into the guest's address space via the 'vmspace->vm_map' and is
backed by an object of type OBJT_DEFAULT.
pmap types:
The amd64/pmap now understands two types of pmaps: PT_X86 and PT_EPT.
The PT_X86 pmap type is used by the vmspace associated with the host kernel
as well as user processes executing on the host. The PT_EPT pmap is used by
the vmspace associated with a bhyve guest.
Page Table Entries:
The EPT page table entries as mostly similar in functionality to regular
page table entries although there are some differences in terms of what
bits are used to express that functionality. For e.g. the dirty bit is
represented by bit 9 in the nested PTE as opposed to bit 6 in the regular
x86 PTE. Therefore the bitmask representing the dirty bit is now computed
at runtime based on the type of the pmap. Thus PG_M that was previously a
macro now becomes a local variable that is initialized at runtime using
'pmap_modified_bit(pmap)'.
An additional wrinkle associated with EPT mappings is that older Intel
processors don't have hardware support for tracking accessed/dirty bits in
the PTE. This means that the amd64/pmap code needs to emulate these bits to
provide proper accounting to the VM subsystem. This is achieved by using
the following mapping for EPT entries that need emulation of A/D bits:
Bit Position Interpreted By
PG_V 52 software (accessed bit emulation handler)
PG_RW 53 software (dirty bit emulation handler)
PG_A 0 hardware (aka EPT_PG_RD)
PG_M 1 hardware (aka EPT_PG_WR)
The idea to use the mapping listed above for A/D bit emulation came from
Alan Cox (alc@).
The final difference with respect to x86 PTEs is that some EPT implementations
do not support superpage mappings. This is recorded in the 'pm_flags' field
of the pmap.
TLB invalidation:
The amd64/pmap code has a number of ways to do invalidation of mappings
that may be cached in the TLB: single page, multiple pages in a range or the
entire TLB. All of these funnel into a single EPT invalidation routine called
'pmap_invalidate_ept()'. This routine bumps up the EPT generation number and
sends an IPI to the host cpus that are executing the guest's vcpus. On a
subsequent entry into the guest it will detect that the EPT has changed and
invalidate the mappings from the TLB.
Guest memory access:
Since the guest memory is no longer wired we need to hold the host physical
page that backs the guest physical page before we can access it. The helper
functions 'vm_gpa_hold()/vm_gpa_release()' are available for this purpose.
PCI passthru:
Guest's with PCI passthru devices will wire the entire guest physical address
space. The MMIO BAR associated with the passthru device is backed by a
vm_object of type OBJT_SG. An IOMMU domain is created only for guest's that
have one or more PCI passthru devices attached to them.
Limitations:
There isn't a way to map a guest physical page without execute permissions.
This is because the amd64/pmap code interprets the guest physical mappings as
user mappings since they are numerically below VM_MAXUSER_ADDRESS. Since PG_U
shares the same bit position as EPT_PG_EXECUTE all guest mappings become
automatically executable.
Thanks to Alan Cox and Konstantin Belousov for their rigorous code reviews
as well as their support and encouragement.
Thanks for John Baldwin for reviewing the use of OBJT_SG as the backing
object for pci passthru mmio regions.
Special thanks to Peter Holm for testing the patch on short notice.
Approved by: re
Discussed with: grehan
Reviewed by: alc, kib
Tested by: pho
immediate operand. The presence of an SIB byte in decoding the ModR/M field
would cause 'imm_bytes' to not be set to the correct value.
Fix this by initializing 'imm_bytes' independent of the ModR/M decoding.
Reported by: grehan@
Approved by: re@
the maximum number of VT-d domains (256 on a Sandybridge). We now allocate a
VT-d domain for a guest only if the administrator has explicitly configured
one or more PCI passthru device(s).
If there are no PCI passthru devices configured (the common case) then the
number of virtual machines is no longer limited by the maximum number of
VT-d domains.
Reviewed by: grehan@
Approved by: re@
This is a workaround to hide the fact that we do not have any code to
demote a superpage mapping before we unmap a single page that is part
of the superpage.
architectural state on CR vmexits by guaranteeing
that EFER, CR0 and the VMCS entry controls are
all in sync when transitioning to IA-32e mode.
Submitted by: Tycho Nightingale (tycho.nightingale <at> plurisbusnetworks.com)
of unloading the module while VMs existed. This would
result in EBUSY, but would prevent further operations
on VMs resulting in the module being impossible to
unload.
Submitted by: Tycho Nightingale (tycho.nightingale <at> plurisbusnetworks.com)
Reviewed by: grehan, neel
This was exposed with AP spinup of Linux, and
booting OpenBSD, where the CR0 register is unconditionally
written to prior to the longjump to enter protected
mode. The CR-vmexit handling was not updating CPU state which
resulted in a vmentry failure with invalid guest state.
A follow-on submit will fix the CPU state issue, but this
fix prevents the CR-vmexit prior to entering protected
mode by properly initializing and maintaining CR* state.
Reviewed by: neel
Reported by: Gopakumar.T @ netapp
bhyve process when an unhandled one is encountered.
Hide some additional capabilities from the guest (e.g. debug store).
This fixes the issue with FreeBSD 9.1 MP guests exiting the VM on
AP spinup (where CPUID is used when sync'ing the TSCs) and the
issue with the Java build where CPUIDs are issued from a guest
userspace.
Submitted by: tycho nightingale at pluribusnetworks com
Reviewed by: neel
Reported by: many
An array-type stat in vmm.ko is defined as follows:
VMM_STAT_ARRAY(IPIS_SENT, VM_MAXCPU, "ipis sent to vcpu");
It is incremented as follows:
vmm_stat_array_incr(vm, vcpuid, IPIS_SENT, array_index, 1);
And output of 'bhyvectl --get-stats' looks like:
ipis sent to vcpu[0] 3114
ipis sent to vcpu[1] 0
Reviewed by: grehan
Obtained from: NetApp
The initial version of this came from Sandvine but had "PROVIDED BY NETAPP,
INC" in the copyright text, presuambly because the license block was copied
from another file. Replace it with standard "AUTHOR AND CONTRIBUTORS" form.
Approvided by: grehan@
- Define data structures to contain the SVM vcpu context
- Define data structures to contain guest and host software context
- Change license in vmcb.h and vmcb.c to remove references to NetApp that
inadvertently sneaked in when the license text was copied from amdv.c.
Submitted by: Anish Gupta (akgupt3@gmail.com)
Rework the guest register fetch code to allow the RIP to
be extracted from the VMCS while the kernel decoder is
functioning.
Hit by the OpenBSD local-apic code.
Submitted by: neel
Reviewed by: grehan
Obtained from: NetApp
- use clock_gettime(2) as the time base for the emulated ACPI timer instead
of directly using rdtsc().
- don't advertise the invariant TSC capability to the guest to discourage it
from using the TSC as its time base.
Discussed with: jhb@ (about making 'smp_tsc' a global)
Reported by: Dan Mack on freebsd-virtualization@
Obtained from: NetApp
decode. This is to accomodate hardware assist implementations that do not
provide the 'guest linear address' as part of nested page fault collateral.
Submitted by: Anish Gupta (akgupt3 at gmail dot com)
This can be done by using the new macros VMM_STAT_INTEL() and VMM_STAT_AMD().
Statistic counters that are common across the two are defined using VMM_STAT().
Suggested by: Anish Gupta
Discussed with: grehan
Obtained from: NetApp
Prior to this change pinning was implemented via an ioctl (VM_SET_PINNING)
that called 'sched_bind()' on behalf of the user thread.
The ULE implementation of 'sched_bind()' bumps up 'td_pinned' which in turn
runs afoul of the assertion '(td_pinned == 0)' in userret().
Using the cpuset affinity to implement pinning of the vcpu threads works with
both 4BSD and ULE schedulers and has the happy side-effect of getting rid
of a bunch of code in vmm.ko.
Discussed with: grehan
can only be located at the beginning or the end of the BAR.
If the MSI-table is located in the middle of a BAR then we will split the
BAR into two and create two mappings - one before the table and one after
the table - leaving a hole in place of the table so accesses to it can be
trapped and emulated.
Obtained from: NetApp
The maximum length of an environment variable puts a limitation on the
number of passthru devices that can be specified via a single variable.
The workaround is to allow user to specify passthru devices via multiple
environment variables instead of a single one.
Obtained from: NetApp
that 'smp_started != 0'.
This is required because the VT-x initialization calls smp_rendezvous()
to set the CR4_VMXE bit on all the cpus.
With this change we can preload vmm.ko from the loader.
Reported by: alfred@, sbruno@
Obtained from: NetApp
x2apic mode on the guest.
The guest can decide whether or not it wants to use legacy mmio or x2apic
access to the APIC by writing to the MSR_APICBASE register.
Obtained from: NetApp
by clang in the local APIC code.
0x81 is a read-modify-write instruction - the EPT check
that only allowed read or write and not both has been
relaxed to allow read and write.
Reviewed by: neel
Obtained from: NetApp
On a nested page table fault the hypervisor will:
- fetch the instruction using the guest %rip and %cr3
- decode the instruction in 'struct vie'
- emulate the instruction in host kernel context for local apic accesses
- any other type of mmio access is punted up to user-space (e.g. ioapic)
The decoded instruction is passed as collateral to the user-space process
that is handling the PAGING exit.
The emulation code is fleshed out to include more addressing modes (e.g. SIB)
and more types of operands (e.g. imm8). The source code is unified into a
single file (vmm_instruction_emul.c) that is compiled into vmm.ko as well
as /usr/sbin/bhyve.
Reviewed by: grehan
Obtained from: NetApp
In the case where the underlying host had disabled MSI-X via the
"hw.pci.enable_msix" tunable, the ppt_setup_msix() function would fail
and return an error without properly cleaning up. This in turn would
cause a page fault on the next boot of the guest.
Fix this by calling ppt_teardown_msix() in all the error return paths.
Obtained from: NetApp
between inline asm statements that would in turn modify the flags
value set by the first asm, and used by the second.
Solve by making the common error block a string that can be pulled
into the first inline asm, and using symbolic labels for asm variables.
bhyve can now build/run fine when compiled with clang.
Reviewed by: neel
Obtained from: NetApp
to vmcs_getreg(). Without this conversion vmcs_getreg() will return EINVAL.
In particular this prevented injection of the breakpoint exception into the
guest via the "-B" option to /usr/sbin/bhyve which is hugely useful when
debugging guest hangs.
This was broken in r241921.
Pointy hat: me
Obtained from: NetApp
vm page allocators do. This fixes a panic when a virtio block
device is mounted as root, with the host system dying in
vm_page_dirty with invalid bits.
Reviewed by: neel
Obtained from: NetApp
guest does a vm exit.
This allows us to trap any fpu access in the host context while the fpu still
has "dirty" state belonging to the guest.
Reported by: "s vas" on freebsd-virtualization@
Obtained from: NetApp
host cpu to the scheduler until the guest is ready to run again.
This implies that the host cpu utilization will now closely mirror the actual
load imposed by the guest vcpu.
Also, the vcpu mutex now needs to be of type MTX_SPIN since we need to acquire
it inside a critical section.
Obtained from: NetApp
If an IPI was delivered to this cpu before interrupts were disabled
then return right away via vmx_setjmp() with a return value of VMX_RETURN_AST.
Obtained from: NetApp
chunks. This breaks the assumption that the entire memory segment is
contiguously allocated in the host physical address space.
This also paves the way to satisfy the 4KB page allocations by requesting
free pages from the VM subsystem as opposed to hard-partitioning host memory
at boot time.
associated with guest physical memory is contiguous.
Add check to vm_gpa2hpa() that the range indicated by [gpa,gpa+len) is all
contained within a single 4KB page.
associated with guest physical memory is contiguous.
In this case vm_malloc() was using vm_gpa2hpa() to indirectly infer whether
or not the address range had already been allocated.
Replace this instead with an explicit API 'vm_gpa_available()' that returns
TRUE if a page is available for allocation in guest physical address space.
page table fault. Use this when fetching the instruction bytes from the guest
memory.
Also modify the lapic_mmio() API so that a decoded instruction is fed into it
instead of having it fetch the instruction bytes from the guest. This is
useful for hardware assists like SVM that provide the faulting instruction
as part of the vmexit.
AP needs to be activated by spinning up an execution context for it.
The local apic emulation is now completely done in the hypervisor and it will
detect writes to the ICR_LO register that try to bring up the AP. In response
to such writes it will return to userspace with an exit code of SPINUP_AP.
Reviewed by: grehan
Includes instruction emulation for memory r/w access. This
opens the door for io-apic, local apic, hpet timer, and
legacy device emulation.
Submitted by: ryan dot berryhill at sandvine dot com
Reviewed by: grehan
Obtained from: Sandvine
systems with VT-x/EPT (e.g. Sandybridge Macbooks). This will most
likely work on VMWare Workstation8/Player4 as well. See the VMWare app
note at:
http://communities.vmware.com/docs/DOC-8970
Fusion doesn't propagate the PAT MSR auto save-restore entry/exit
control bits. Deal with this by noting that fact and setting up the
PAT MSR to essentially be a no-op - it is init'd to power-on default,
and a software shadow copy maintained.
Since it is treated as a no-op, o/s settings are essentially ignored.
This may not give correct results, but since the hypervisor is running
nested, a number of bets are already off.
On a quad-core/HT-enabled 'MacBook8,2', nested VMs with 1/2/4 vCPUs were
fired up. The more nested vCPUs the worse the performance, unless the VMs
were started up in multiplexed mode where things worked perfectly up to
the limit of 8 vCPUs.
Reviewed by: neel
- Don't always pass the cpuid request to the current CPU as some nodes
we will emulate purely in software.
- Pass in the APIC ID of the virtual CPU so we can return the proper APIC
ID.
- Always report a completely flat topology with no SMT or multicore.
- Report the CPUID2_HV feature and implement support for the 0x40000000
CPUID level.
- Use existing constants from <machine/specialreg.h> when possible and
use cpu_feature2 when checking for VMX support.
There was an assumption by the "callers" of this macro that on "return" the
%rsp will be pointing to the 'vmxctx'. The macro was not doing this and thus
when trying to restore host state on an error from "vmlaunch" or "vmresume"
we were treating the memory locations on the host stack as 'struct vmxctx'.
This led to all sorts of weird bugs like double faults or invalid instruction
faults.
This bug is exposed by the -O2 option used to compile the kernel module. With
the -O2 flag the compiler will optimize the following piece of code:
int loopstart = 1;
...
if (loopstart) {
loopstart = 0;
vmx_launch();
} else
vmx_resume();
into this:
vmx_launch();
Since vmx_launch() and vmx_resume() are declared to be __dead2 functions the
compiler is free to do this. The compiler has no way to know that the
functions return indirectly through vmx_setjmp(). This optimization in turn
leads us to trigger the bug in VMXCTX_GUEST_RESTORE().
With this change we can boot a 8.1 guest on a 9.0 host.
Reported by: jhb@
This was benign because the interruption info field is a 32-bit quantity and
the hardware guarantees that the upper 32-bits are all zeros. But it did make
reading the objdump output very confusing.
run as a 1/2 CPU guest on an 8.1 bhyve host.
bhyve/inout.c
inout.h
fbsdrun.c
- Rather than exiting on accesses to unhandled i/o ports, emulate
hardware by returning -1 on reads and ignoring writes to unhandled
ports. Support the previous mode by allowing a 'strict' parameter
to be set from the command line.
The 8.1 guest kernel was vastly cut down from GENERIC and had no
ISA devices. Booting GENERIC exposes a massive amount of random
touching of i/o ports (hello syscons/vga/atkbdc).
bhyve/consport.c
dev/bvm/bvm_console.c
- implement a simplistic signature for the bvm console by returning
'bv' for an inw on the port. Also, set the priority of the console
to CN_REMOTE if the signature was returned. This works better in
an environment where multiple consoles are in the kernel (hello syscons)
bhyve/rtc.c
- return 0 for the access to RTC_EQUIPMENT (yes, you syscons)
amd64/vmm/x86.c
x86.h
- hide a bunch more CPUID leaf 1 bits from the guest to prevent
cpufreq drivers from probing.
The next step will be to move CPUID handling completely into
user-space. This will allow the full spectrum of changes from
presenting a lowest-common-denominator CPU type/feature set, to
exposing (almost) everything that the host can support.
Reviewed by: neel
Obtained from: NetApp
vmm.ko - kernel module for VT-x, VT-d and hypervisor control
bhyve - user-space sequencer and i/o emulation
vmmctl - dump of hypervisor register state
libvmm - front-end to vmm.ko chardev interface
bhyve was designed and implemented by Neel Natu.
Thanks to the following folk from NetApp who helped to make this available:
Joe CaraDonna
Peter Snyder
Jeff Heller
Sandeep Mann
Steve Miller
Brian Pawlowski