subsystems will be a property of policy modules, which may require
access control check entry points to be invoked even when not actively
enforcing (i.e., to track information flow without providing
protection).
Obtained from: TrustedBSD Project
Suggested by: Christopher dot Vance at sparta dot com
than from the slab, but don't.
Document mac_mbuf_to_label(), mac_copy_mbuf_tag().
Clean up white space/wrapping for other comments.
Obtained from: TrustedBSD Project
Exapnd comments on System V IPC labeling methods, which could use improved
consistency with respect to other object types.
Obtained from: TrustedBSD Project
the ifnet itself. The stack copy has been made while holding the mutex
protecting ifnet labels, so copying from the ifnet copy could result in
an inconsistent version being copied out.
Reported by: Todd.Miller@sparta.com
Obtained from: TrustedBSD Project
MFC after: 3 weeks
kernel. This LOR snuck in with some of the recent syncache changes. To
fix this, the inpcb handling was changed:
- Hang a MAC label off the syncache object
- When the syncache entry is initially created, we pickup the PCB lock
is held because we extract information from it while initializing the
syncache entry. While we do this, copy the MAC label associated with
the PCB and use it for the syncache entry.
- When the packet is transmitted, copy the label from the syncache entry
to the mbuf so it can be processed by security policies which analyze
mbuf labels.
This change required that the MAC framework be extended to support the
label copy operations from the PCB to the syncache entry, and then from
the syncache entry to the mbuf.
These functions really should be referencing the syncache structure instead
of the label. However, due to some of the complexities associated with
exposing this syncache structure we operate directly on it's label pointer.
This should be OK since we aren't making any access control decisions within
this code directly, we are merely allocating and copying label storage so
we can properly initialize mbuf labels for any packets the syncache code
might create.
This also has a nice side effect of caching. Prior to this change, the
PCB would be looked up/locked for each packet transmitted. Now the label
is cached at the time the syncache entry is initialized.
Submitted by: andre [1]
Discussed with: rwatson
[1] andre submitted the tcp_syncache.c changes
specific privilege names to a broad range of privileges. These may
require some future tweaking.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
privilege for threads and credentials. Unlike the existing suser(9)
interface, priv(9) exposes a named privilege identifier to the privilege
checking code, allowing more complex policies regarding the granting of
privilege to be expressed. Two interfaces are provided, replacing the
existing suser(9) interface:
suser(td) -> priv_check(td, priv)
suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags)
A comprehensive list of currently available kernel privileges may be
found in priv.h. New privileges are easily added as required, but the
comments on adding privileges found in priv.h and priv(9) should be read
before doing so.
The new privilege interface exposed sufficient information to the
privilege checking routine that it will now be possible for jail to
determine whether a particular privilege is granted in the check routine,
rather than relying on hints from the calling context via the
SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail
check function, prison_priv_check(), is exposed from kern_jail.c and used
by the privilege check routine to determine if the privilege is permitted
in jail. As a result, a centralized list of privileges permitted in jail
is now present in kern_jail.c.
The MAC Framework is now also able to instrument privilege checks, both
to deny privileges otherwise granted (mac_priv_check()), and to grant
privileges otherwise denied (mac_priv_grant()), permitting MAC Policy
modules to implement privilege models, as well as control a much broader
range of system behavior in order to constrain processes running with
root privilege.
The suser() and suser_cred() functions remain implemented, now in terms
of priv_check() and the PRIV_ROOT privilege, for use during the transition
and possibly continuing use by third party kernel modules that have not
been updated. The PRIV_DRIVER privilege exists to allow device drivers to
check privilege without adopting a more specific privilege identifier.
This change does not modify the actual security policy, rather, it
modifies the interface for privilege checks so changes to the security
policy become more feasible.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
other problems while labels were first being added to various kernel
objects. They have outlived their usefulness.
MFC after: 1 month
Suggested by: Christopher dot Vance at SPARTA dot com
Obtained from: TrustedBSD Project
with other commonly used sysctl name spaces, rather than declaring them
all over the place.
MFC after: 1 month
Sponsored by: nCircle Network Security, Inc.
exists to allow the mandatory access control policy to properly initialize
mbufs generated by the firewall. An example where this might happen is keep
alive packets, or ICMP error packets in response to other packets.
This takes care of kernel panics associated with un-initialize mbuf labels
when the firewall generates packets.
[1] I modified this patch from it's original version, the initial patch
introduced a number of entry points which were programmatically
equivalent. So I introduced only one. Instead, we should leverage
mac_create_mbuf_netlayer() which is used for similar situations,
an example being icmp_error()
This will minimize the impact associated with the MFC
Submitted by: mlaier [1]
MFC after: 1 week
This is a RELENG_6 candidate
pointer prototypes from it into their own typedefs. No functional or
ABI change. This allows policies to declare their own function
prototypes based on a common definition from mac_policy.h rather than
duplicating these definitions.
Obtained from: SEDarwin, SPARTA
MFC after: 1 month
credential: mac_associate_nfsd_label()
This entry point can be utilized by various Mandatory Access Control policies
so they can properly initialize the label of files which get created
as a result of an NFS operation. This work will be useful for fixing kernel
panics associated with accessing un-initialized or invalid vnode labels.
The implementation of these entry points will come shortly.
Obtained from: TrustedBSD
Requested by: mdodd
MFC after: 3 weeks
be called without any vnode locks held. Remove calls to vn_start_write() and
vn_finished_write() in vnode_pager_putpages() and add these calls before the
vnode lock is obtained to most of the callers that don't already have them.
framework. This makes Giant protection around MAC operations which inter-
act with VFS conditional, based on the MPSAFE status of the file system.
Affected the following syscalls:
o __mac_get_fd
o __mac_get_file
o __mac_get_link
o __mac_set_fd
o __mac_set_file
o __mac_set_link
-Drop Giant all together in __mac_set_proc because the
mac_cred_mmapped_drop_perms_recurse routine no longer requires it.
-Move conditional Giant aquisitions to after label allocation routines.
-Move the conditional release of Giant to before label de-allocation
routines.
Discussed with: rwatson
provided access to the root file system before the start of the
init process. This was used briefly by SEBSD before it knew about
preloading data in the loader, and using that method to gain
access to data earlier results in fewer inconsistencies in the
approach. Policy modules still have access to the root file system
creation event through the mac_create_mount() entry point.
Removed now, and will be removed from RELENG_6, in order to gain
third party policy dependencies on the entry point for the lifetime
of the 6.x branch.
MFC after: 3 days
Submitted by: Chris Vance <Christopher dot Vance at SPARTA dot com>
Sponsored by: SPARTA
entry points that will be inserted over the life-time of the 6.x branch,
including for:
- New struct file labeling (void * already added to struct file), events,
access control checks.
- Additional struct mount access control checks, internalization/
externalization.
- mac_check_cap()
- System call enter/exit check and event.
- Socket and vnode ioctl entry points.
MFC after: 3 days
process that caused the clone event to take place for the device driver
creating the device. This allows cloned device drivers to adapt the
device node based on security aspects of the process, such as the uid,
gid, and MAC label.
- Add a cred reference to struct cdev, so that when a device node is
instantiated as a vnode, the cloning credential can be exposed to
MAC.
- Add make_dev_cred(), a version of make_dev() that additionally
accepts the credential to stick in the struct cdev. Implement it and
make_dev() in terms of a back-end make_dev_credv().
- Add a new event handler, dev_clone_cred, which can be registered to
receive the credential instead of dev_clone, if desired.
- Modify the MAC entry point mac_create_devfs_device() to accept an
optional credential pointer (may be NULL), so that MAC policies can
inspect and act on the label or other elements of the credential
when initializing the skeleton device protections.
- Modify tty_pty.c to register clone_dev_cred and invoke make_dev_cred(),
so that the pty clone credential is exposed to the MAC Framework.
While currently primarily focussed on MAC policies, this change is also
a prerequisite for changes to allow ptys to be instantiated with the UID
of the process looking up the pty. This requires further changes to the
pty driver -- in particular, to immediately recycle pty nodes on last
close so that the credential-related state can be recreated on next
lookup.
Submitted by: Andrew Reisse <andrew.reisse@sparta.com>
Obtained from: TrustedBSD Project
Sponsored by: SPAWAR, SPARTA
MFC after: 1 week
MFC note: Merge to 6.x, but not 5.x for ABI reasons
redundant with respect to existing mbuf copy label routines. Expose
a new mac_copy_mbuf() routine at the top end of the Framework and
use that; use the existing mpo_copy_mbuf_label() routine on the
bottom end.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA, SPAWAR
Approved by: re (scottl)
which is invoked from socket() and socketpair(), permitting MAC
policy modules to control the creation of sockets by domain, type, and
protocol.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA, SPAWAR
Approved by: re (scottl)
Requested by: SCC
points to convert _sema() to _sem() for consistency purposes with
respect to the other semaphore-related entry points:
mac_init_sysv_sema() -> mac_init_sysv_sem()
mac_destroy_sysv_sem() -> mac_destroy_sysv_sem()
mac_create_sysv_sema() -> mac_create_sysv_sem()
mac_cleanup_sysv_sema() -> mac_cleanup_sysv_sem()
Congruent changes are made to the policy interface to support this.
Obtained from: TrustedBSD Project
Sponsored by: SPAWAR, SPARTA
access to POSIX Semaphores:
mac_init_posix_sem() Initialize label for POSIX semaphore
mac_create_posix_sem() Create POSIX semaphore
mac_destroy_posix_sem() Destroy POSIX semaphore
mac_check_posix_sem_destroy() Check whether semaphore may be destroyed
mac_check_posix_sem_getvalue() Check whether semaphore may be queried
mac_check_possix_sem_open() Check whether semaphore may be opened
mac_check_posix_sem_post() Check whether semaphore may be posted to
mac_check_posix_sem_unlink() Check whether semaphore may be unlinked
mac_check_posix_sem_wait() Check whether may wait on semaphore
Update Biba, MLS, Stub, and Test policies to implement these entry points.
For information flow policies, most semaphore operations are effectively
read/write.
Submitted by: Dandekar Hrishikesh <rishi_dandekar at sbcglobal dot net>
Sponsored by: DARPA, McAfee, SPARTA
Obtained from: TrustedBSD Project
mac_check_proc_wait(), which control the ability to wait4() specific
processes. This permits MAC policies to limit information flow from
children that have changed label, although has to be handled carefully
due to common programming expectations regarding the behavior of
wait4(). The cr_seeotheruids() check in p_canwait() is #if 0'd for
this reason.
The mac_stub and mac_test policies are updated to reflect these new
entry points.
Sponsored by: SPAWAR, SPARTA
Obtained from: TrustedBSD Project
control socket poll() (select()), fstat(), and accept() operations,
required for some policies:
poll() mac_check_socket_poll()
fstat() mac_check_socket_stat()
accept() mac_check_socket_accept()
Update mac_stub and mac_test policies to be aware of these entry points.
While here, add missing entry point implementations for:
mac_stub.c stub_check_socket_receive()
mac_stub.c stub_check_socket_send()
mac_test.c mac_test_check_socket_send()
mac_test.c mac_test_check_socket_visible()
Obtained from: TrustedBSD Project
Sponsored by: SPAWAR, SPARTA
of the socket label to thread-local storage, and replace it with
conditional acquisition based on debug.mpsafenet. Acquire the socket
lock around the copy operation.
In mac_set_fd(), replace the unconditional acquisition of Giant with
the conditional acquisition of Giant based on debug.mpsafenet. The socket
lock is acquired in mac_socket_label_set() so doesn't have to be
acquired here.
Obtained from: TrustedBSD Project
Sponsored by: SPAWAR, SPARTA
of system calls to manipulate elements of the process credential,
including:
setuid() mac_check_proc_setuid()
seteuid() mac_check_proc_seteuid()
setgid() mac_check_proc_setgid()
setegid() mac_check_proc_setegid()
setgroups() mac_check_proc_setgroups()
setreuid() mac_check_proc_setreuid()
setregid() mac_check_proc_setregid()
setresuid() mac_check_proc_setresuid()
setresgid() mac_check_rpoc_setresgid()
MAC checks are performed before other existing security checks; both
current credential and intended modifications are passed as arguments
to the entry points. The mac_test and mac_stub policies are updated.
Submitted by: Samy Al Bahra <samy@kerneled.org>
Obtained from: TrustedBSD Project