Change CCB queue resize logic to be able safely handle overallocations:
- (re)allocate queue space in power of 2 chunks with 64 elements minimum
and never shrink it; with only 4/8 bytes per element size is insignificant.
- automatically reallocate the queue to double size if it is overflowed.
- if queue reallocation failed, store extra CCBs in unsorted TAILQ,
fetching them back as soon as some queue element is freed.
To free space in CCB for TAILQ linking, change highpowerq from keeping
high-power CCBs to keeping devices frozen due to high-power CCBs.
This encloses all pieces of queue resize logic inside of cam_queue.[ch],
removing some not obvious duties from xpt_release_ccb().
Add a PIM_NOSCAN flag to the CAM path inquiry CCB. This tells CAM
not to perform a rescan on a bus when it is registered.
We now use this flag in the mps(4) driver. Since it knows what
devices it has attached, it is more efficient for it to just issue
a target rescan on the targets that are attached.
Also, remove the private rescan thread from the mps(4) driver in
favor of the rescan thread already built into CAM. Without this
change, but with the change above, the MPS scanner could run before
or during CAM's initial setup, which would cause duplicate device
reprobes and announcements.
sys/param.h:
Bump __FreeBSD_version to 1000039 for the inclusion of the
PIM_RESCAN CAM path inquiry flag.
sys/cam/cam_ccb.h:
sys/cam/cam_xpt.c:
Added a PIM_NOSCAN flag. If a SIM sets this in the path
inquiry ccb, then CAM won't rescan the bus in
xpt_bus_regsister.
sys/dev/mps/mps_sas.c
For versions of FreeBSD that have the PIM_NOSCAN path
inquiry flag, don't freeze the sim queue during scanning,
because CAM won't be scanning this bus. Instead, hold
up the boot. Don't call mpssas_rescan_target in
mpssas_startup_decrement; it's redundant and I don't
know why it was in there.
Set PIM_NOSCAN in path inquiry CCBs.
Remove methods related to the internal rescan daemon.
Always use async events to trigger a probe for EEDP support.
In older versions of FreeBSD where AC_ADVINFO_CHANGED is
not available, use AC_FOUND_DEVICE and issue the
necessary READ CAPACITY manually.
Provide a path to xpt_register_async() so that we only
receive events for our own SCSI domain.
Improve error reporting in cases where setup for EEDP
detection fails.
sys/dev/mps/mps_sas.h:
Remove softc flags and data related to the scanner thread.
sys/dev/mps/mps_sas_lsi.c:
Unconditionally rescan the target whenever a device is added.
Sponsored by: Spectra Logic
MFC after: 1 week
needed for the last 10 years. Far too much of the internal API is
exposed, and every small adjustment causes applications to stop working.
To kick this off, bump the API version to 0x17 as should have been done
with r246713, but add shims to compensate. Thanks to the shims, there
should be no visible change in application behavior.
I have plans to do a significant overhaul of the API to harnen it for
the future, but until then, I welcome others to add shims for older
versions of the API.
Obtained from: Netflix
SPC-4 specification states that serial number may be property of device,
but not a specific logical unit. People reported about FC storages using
serial number in that way, making it unusable for purposes of LUN multipath
detection. SPC-4 states that designators associated with logical unit from
the VPD page 83h "Device Identification" should be used for that purpose.
Report first of them in the new attribute in such preference order: NAA,
EUI-64, T10 and SCSI name string.
While there, make GEOM DISK properly report GEOM::ident in XML output also
using d_getattr() method, if available. This fixes serial numbers reporting
for SCSI disks in `geom disk list` output and confxml.
Discussed with: gibbs, ken
Sponsored by: iXsystems, Inc.
MFC after: 2 weeks
This allows users who boot without loader to adjust their environments
around slightly buggy or slow hardware.
PR: kern/161809
Submitted by: rozhuk.im@gmail.com
MFC after: 2 weeks
Stop abusing xpt_periph in random plases that really have no periph related
to CCB, for example, bus scanning. NULL value is fine in such cases and it
is correctly logged in debug messages as "noperiph". If at some point we
need some real XPT periphs (alike to pmpX now), quite likely they will be
per-bus, and not a single global instance as xpt_periph now.
r248917, r248918, r248978, r249001, r249014, r249030:
Remove multilevel freezing mechanism, implemented to handle specifics of
the ATA/SATA error recovery, when post-reset recovery commands should be
allocated when queues are already full of payload requests. Instead of
removing frozen CCBs with specified range of priorities from the queue
to provide free openings, use simple hack, allowing explicit CCBs over-
allocation for requests with priority higher (numerically lower) then
CAM_PRIORITY_OOB threshold.
Simplify CCB allocation logic by removing SIM-level allocation queue.
After that SIM-level queue manages only CCBs execution, while allocation
logic is localized within each single device.
Suggested by: gibbs
r249017:
Some cosmetic things:
- Unify device to target insertion inside xpt_alloc_device() instead of
duplicating it three times.
- Remove extra checks for empty lists of devices and targets on release
since zero refcount check also implies it.
- Reformat code to reduce indentation.
r249103:
- Add lock assertions to every point where reference counters are modified.
- When reference counters are reaching zero, add assertions that there are
no children items left.
- Add a bit more locking to the xptpdperiphtraverse().
Move CAM_DEBUG_CDB messages from the point of queuing to the point of
sending to SIM. That allows to inspect real requests execution order,
respecting priorities, freezing, etc.
MFC after: 2 weeks
every architecture's busdma_machdep.c. It is done by unifying the
bus_dmamap_load_buffer() routines so that they may be called from MI
code. The MD busdma is then given a chance to do any final processing
in the complete() callback.
The cam changes unify the bus_dmamap_load* handling in cam drivers.
The arm and mips implementations are updated to track virtual
addresses for sync(). Previously this was done in a type specific
way. Now it is done in a generic way by recording the list of
virtuals in the map.
Submitted by: jeff (sponsored by EMC/Isilon)
Reviewed by: kan (previous version), scottl,
mjacob (isp(4), no objections for target mode changes)
Discussed with: ian (arm changes)
Tested by: marius (sparc64), mips (jmallet), isci(4) on x86 (jharris),
amd64 (Fabian Keil <freebsd-listen@fabiankeil.de>)
The problem was a race condition between the EDT traversal used by
things like 'camcontrol devlist', and CAM peripheral driver
removal.
The EDT traversal code holds the CAM topology lock, and wants
to show devices that have been invalidated. It acquires a
reference to the peripheral to make sure the peripheral it is
examining doesn't go away.
However, because the peripheral removal code in camperiphfree()
drops the CAM topology lock to call the peripheral's destructor
routine, we can run into a situation where the EDT traversal
increments the peripheral reference count after free process is
already in progress. At that point, the reference count is
ignored, because it was 0 when we started the process.
Fix this race by setting a flag, CAM_PERIPH_FREE, that I previously
added and checked in xptperiphtraverse() and xptpdperiphtravsere(),
but failed to use. If the EDT traversal code sees that flag,
it will know that the peripheral free process has already started,
and that it should not access that peripheral.
Also, fix an inconsistency in the locking between
xptpdperiphtraverse() and xptperiphtraverse(). They now both
hold the CAM topology lock while calling the peripheral traversal
function.
cam_xpt.c: Change xptperiphtraverse() to hold the CAM topology
lock across calls to the traversal function.
Take out the comment in xptpdperiphtraverse() that
referenced the locking inconsistency.
cam_periph.c: Set the CAM_PERIPH_FREE flag when we are in the
process of freeing a peripheral driver.
Sponsored by: Spectra Logic Corporation
MFC after: 1 week
safe in some cases to reduce CCB priority after it was scheduled with high
priority. This fixes reproducible deadlock when command sent through the
pass interface while ATA XPT recovers from command timeout.
Instead of that enforce priority at passioctl(). libcam provides no obvious
interface to specify CCB priority and so much (all?) code specifies zero
(highest) priority. This change limits pass CCBs priority to NORMAL run
level, allowing XPT to complete bus and device recovery after reset before
running any payload.
- Extend the lock to cover xpt_path_release() for the new path.
- While xpt_action() is called while holding right SIM lock for the new
bus, the old path release may require different SIM lock. So we have
to temporary drop the new lock and get the old one.
without holding SIM lock. It really doesn't need that lock, but adding it
removes that specific exception, allowing to assert locking there later.
Submitted by: ken@ (earlier version)
It includes three parts:
1) Modifications to CAM to detect media media changes and report them to
disk(9) layer. For modern SATA (and potentially UAS) devices it utilizes
Asynchronous Notification mechanism to receive events from hardware.
Active polling with TEST UNIT READY commands with 3 seconds period is used
for incapable hardware. After that both CD and DA drivers work the same way,
detecting two conditions: "NOT READY: Medium not present" after medium was
detected previously, and "UNIT ATTENTION: Not ready to ready change, medium
may have changed". First one reported to disk(9) as media removal, second
as media insert/change. To reliably receive second event new
AC_UNIT_ATTENTION async added to make UAs broadcasted to all periphs by
generic error handling code in cam_periph_error().
2) Modifications to GEOM core to handle media remove and change events.
Media removal handled by spoiling all consumers attached to the provider.
Media change event also schedules provider retaste after spoiling to probe
new media. New flag G_CF_ORPHAN was added to consumers to reflect that
consumer is in process of destruction. It allows retaste to create new
geom instance of the same class, while previous one is still dying.
3) Modifications to some GEOM classes: DEV -- to report media change
events to devd; VFS -- to handle spoiling same as orphan to prevent
accessing replaced media. PART class already handles spoiling alike to
orphan.
Reviewed by: silence on geom@ and scsi@
Tested by: avg
Sponsored by: iXsystems, Inc. / PC-BSD
MFC after: 2 months
done queue. Clearing it before caused extra SIM queueing in some cases.
It was invisible during normal operation, but during USB device unplug and
respective SIM destruction it could keep pointer on SIM without having
counted reference and as result crash the system by use afer free.
Reported by: hselasky
MFC after: 1 week
the pass(4) and enc(4) drivers and devfs.
The pass(4) driver uses the destroy_dev_sched() routine to
schedule its device node for destruction in a separate thread
context. It does this because the passcleanup() routine can get
called indirectly from the passclose() routine, and that would
cause a deadlock if the close routine tried to destroy its own
device node.
In any case, once a particular passthrough driver number, e.g.
pass3, is destroyed, CAM considers that unit number (3 in this
case) available for reuse.
The problem is that devfs may not be done cleaning up the previous
instance of pass3, and will panic if isn't done cleaning up the
previous instance.
The solution is to get a callback from devfs when the device node
is removed, and make sure we hold a reference to the peripheral
until that happens.
Testing exposed some other cases where we have reference counting
issues, and those were also fixed in the pass(4) driver.
cam_periph.c: In camperiphfree(), reorder some of the operations.
The peripheral destructor needs to be called before
the peripheral is removed from the peripheral is
removed from the list. This is because once we
remove the peripheral from the list, and drop the
topology lock, the peripheral number may be reused.
But if the destructor hasn't been called yet, there
may still be resources hanging around (like devfs
nodes) that haven't been fully cleaned up.
cam_xpt.c: Add an argument to xpt_remove_periph() to indicate
whether the topology lock is already held.
scsi_enc.c: Acquire an extra reference to the peripheral during
registration, and release it once we get a callback
from devfs indicating that the device node is gone.
Call destroy_dev_sched_cb() in enc_oninvalidate()
instead of calling destroy_dev() in the cleanup
routine.
scsi_pass.c: Add reference counting to handle peripheral and
devfs object lifetime issues.
Add a reference to the peripheral and the devfs
node in the peripheral registration.
Don't attempt to add a physical path alias if the
peripheral has been marked invalid.
Release the devfs reference once the initial
physical path alias taskqueue run has completed.
Schedule devfs node destruction in the
passoninvalidate(), and release our peripheral
reference in a new routine, passdevgonecb() once
the devfs node is gone. This allows the peripheral
to fully go away, and the peripheral destructor,
passcleanup(), will get called.
MFC after: 3 days
Sponsored by: Spectra Logic
CAM_DEBUG_CDB, CAM_DEBUG_PERIPH and CAM_DEBUG_PROBE) by default.
List of these flags can be modified with CAM_DEBUG_COMPILE kernel option.
CAMDEBUG kernel option still enables all possible debug, if not overriden.
Additional 50KB of kernel size is a good price for the ability to debug
problems without rebuilding the kernel. In case where size is important,
debugging can be compiled out by setting CAM_DEBUG_COMPILE option to 0.
via `camcontrol tags ... -N ...`. There is no need to tune it in
usual cases, but some users want to have it for debugging purposes.
MFC after: 2 weeks
- Add low-level support for SATA Enclosure Management Bridge (SEMB)
devices -- SATA equivalents of the SCSI SES/SAF-TE devices.
- Add some utility functions for SCSI SAF-TE devices access.
Sponsored by: iXsystems, Inc.
to allow drivers to handle request completion directly without passing
them to the CAM SWI thread removing extra context switch.
Modify all ATA/SATA drivers to use them.
Reviewed by: gibbs, ken
MFC after: 2 weeks
data changes.
cam_ccb.h: Add a new advanced information type, CDAI_TYPE_RCAPLONG,
for long read capacity data.
cam_xpt_internal.h:
Add a read capacity data pointer and length to struct cam_ed.
cam_xpt.c: Free the read capacity buffer when a device goes away.
While we're here, make sure we don't leak memory for other
malloced fields in struct cam_ed.
scsi_all.c: Update the scsi_read_capacity_16() to take a uint8_t * and
a length instead of just a pointer to the parameter data
structure. This will hopefully make this function somewhat
immune to future changes in the parameter data.
scsi_all.h: Add some extra bit definitions to struct
scsi_read_capacity_data_long, and bump up the structure
size to the full size specified by SBC-3.
Change the prototype for scsi_read_capacity_16().
scsi_da.c: Register changes in read capacity data with the transport
layer. This allows the transport layer to send out an
async notification to interested parties. Update the
dasetgeom() API.
Use scsi_extract_sense_len() instead of
scsi_extract_sense().
scsi_xpt.c: Add support for the new CDAI_TYPE_RCAPLONG advanced
information type.
Make sure we set the physpath pointer to NULL after freeing
it. This allows blindly freeing it in the struct cam_ed
destructor.
sys/param.h: Bump __FreeBSD_version from 1000005 to 1000006 to make it
easier for third party drivers to determine that the read
capacity data async notification is available.
camcontrol.c,
mptutil/mpt_cam.c:
Update these for the new scsi_read_capacity_16() argument
structure.
Sponsored by: Spectra Logic
in the CAM XPT bus traversal code, and a number of other periph level
issues.
cam_periph.h,
cam_periph.c: Modify cam_periph_acquire() to test the CAM_PERIPH_INVALID
flag prior to allowing a reference count to be gained
on a peripheral. Callers of this function will receive
CAM_REQ_CMP_ERR status in the situation of attempting to
reference an invalidated periph. This guarantees that
a peripheral scheduled for a deferred free will not
be accessed during its wait for destruction.
Panic during attempts to drop a reference count on
a peripheral that already has a zero reference count.
In cam_periph_list(), use a local sbuf with SBUF_FIXEDLEN
set so that mallocs do not occur while the xpt topology
lock is held, regardless of the allocation policy of the
passed in sbuf.
Add a new routine, cam_periph_release_locked_buses(),
that can be called when the caller already holds
the CAM topology lock.
Add some extra debugging for duplicate peripheral
allocations in cam_periph_alloc().
Treat CAM_DEV_NOT_THERE much the same as a selection
timeout (AC_LOST_DEVICE is emitted), but forgo retries.
cam_xpt.c: Revamp the way the EDT traversal code does locking
and reference counting. This was broken, since it
assumed that the EDT would not change during
traversal, but that assumption is no longer valid.
So, to prevent devices from going away while we
traverse the EDT, make sure we properly lock
everything and hold references on devices that
we are using.
The two peripheral driver traversal routines should
be examined. xptpdperiphtraverse() holds the
topology lock for the entire time it runs.
xptperiphtraverse() is now locked properly, but
only holds the topology lock while it is traversing
the list, and not while the traversal function is
running.
The bus locking code in xptbustraverse() should
also be revisited at a later time, since it is
complex and should probably be simplified.
scsi_da.c: Pay attention to the return value from cam_periph_acquire().
Return 0 always from daclose() even if the disk is now gone.
Add some rudimentary error injection support.
scsi_sg.c: Fix reference counting in the sg(4) driver.
The sg driver was calling cam_periph_release() on close,
but never called cam_periph_acquire() (which increments
the reference count) on open.
The periph code correctly complained that the sg(4)
driver was trying to decrement the refcount when it
was already 0.
Sponsored by: Spectra Logic
MFC after: 2 weeks
the 16-bit cylinders field of the VTOC8 disk label (at around 502GB). The
geometry chosen for disks above that limit allows to use disks up to 2TB,
which is the limit of the extended VTOC8 format. The geometry used for
disks smaller than the 16-bit cylinders limit stays the same as used by
cam_calc_geometry(9) for extended translation.
Thanks to Hans-Joerg Sirtl for providing hardware for testing this change.
MFC after: 3 days
It blocks CAM SWI usage on requests completion, unneeded because of polling
and denied during kernel dumping because of blocked scheduler.
Before r198899 there was periph flag CAM_PERIPH_POLLED, but that was wrong,
because there is whole SIM is polled or handled by SWI, not a single periph.
Tested by: kib
MFC after: 1 month
target reference miscounts. It also adds a helper function to get
the current reference counts for components of cam_path for debug
aid. One minor style(9) change.
Partially Obtained from: Chuck Tuffli (Emulex)
Reviewed by: scsi@ (ken)
Approved by: re (kib)
MFC after: 1 month
In camisr_runqueue(), we need to run the sims queue regardless of
whether or not the current peripheral has more work to do. This
reverts a change mistakenly made in revision 223081.
Reported by: ache
other device attributes stored in the CAM Existing Device Table (EDT).
This includes some infrastructure requried by the enclosure services
driver to export physical path information.
Make the CAM device advanced info interface accept store requests.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
- Replace scsi_get_sas_addr() with a scsi_get_devid() which takes
a callback that decides whether to accept a particular descriptor.
Provide callbacks for NAA IEEE Registered addresses and for SAS
addresses, replacing the old function. This is needed because
the old function doesn't work for an enclosure address for a SAS
device, which is not flagged as a SAS address, but is NAA IEEE
Registered. It may be worthwhile merging this interface with the
devid match interface.
- Add a few more defines for some device ID fields.
sbin/camcontrol/camcontrol.c:
- Update for the CCB_DEV_ADVINFO interface change.
cam/cam_xpt_internal.h:
- Add the new fields for the physical path string to the CAM EDT.
cam/cam_ccb.h:
- Rename CCB_GDEV_ADVINFO to simply CCB_DEV_ADVINFO, and the ccb
structure to ccb_dev_advinfo.
- Add a flag that changes this CCB's action to store, rather than
the default, retrieve.
- Add a new buffer type, CDAI_TYPE_PHYS_PATH, for the new CAM EDT
physpath field.
- Remove the never-implemented transport & proto flags.
cam/cam_xpt.c:
cam/cam_xpt.h:
- Add xpt_getattr(), which provides a wrapper for fetching a device's
attribute using the GEOM strings as key. This method currently
supports "GEOM::ident" and "GEOM::physpath".
Submitted by: will
Reviewed by : gibbs
Extend the XPT_DEV_MATCH api to allow a device search by device ID.
As far as the API is concerned, device ID is a binary blob to be
interpreted by the transport layer. The SCSI implementation assumes
it is an array of VPD device ID descriptors.
sys/cam/cam_ccb.h:
Create a new structure, device_id_match_pattern, and
update the XPT_DEV_MATCH datastructures and flags so
that this pattern type can be used.
sys/cam/cam_xpt.c:
- A single pattern matching on both inquiry data and device
ID is invalid. Report any violators.
- Pass device ID match requests through to the new routine
scsi_devid_match(). The direct call of a SCSI routine is
a layering violation, but no worse than the one a few
lines up that checks inquiry data. Defer cleaning this
up until our future, larger, rototilling of CAM.
- Zero out cam_ed and cam_et nodes on allocation. Prior to
this change, device_id_len and device_id were not inialized,
preventing proper detection of the presence of this
information.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
Add the scsi_match_devid() routine.
Add a helper function for extracting peripherial driver names
sys/cam/cam_periph.c:
sys/cam/cam_periph.h:
Add the cam_periph_list() method which fills an sbuf
with a comma delimited list of the peripheral instances
associated with a given CAM path.
Add a helper functions for SCSI commands used by the SES driver.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
Add structure definitions and csio filling functions for
the receive diagnostic results and send diagnostic commands.
Misc CAM XPT cleanups.
sys/cam/cam_xpt.c:
Broadcast AC_FOUND_DEVICE and AC_PATH_REGISTERED
events at the time async event handlers are attached
even when registering just for events on a partitular
SIM. Previously, you had to register for these
events on all SIMs in the system in order to get
the initial broadcast even though subsequent device
and path arrivals would be delivered.
sys/cam/cam_xpt.c:
Remove SIM mutex held asserts from path accessors.
CAM paths are reference counted and it is this
reference count, not the sim mutex, that garantees
they are stable.
Sponsored by: Spectra Logic Corporation