. Hook coshl, sinhl, and tanhl into libm.
. Create symbolic links for corresponding manpages.
. While here remove a nearby extraneous space.
* Symbol.map:
* src/math.h:
. Move coshl, sinhl, and tanhl to their proper locations.
* man/cosh.3:
* man/sinh.3:
* man/tanh.3:
. Update the manpages.
* src/e_cosh.c:
* src/e_sinh.c:
* src/s_tanh.c:
. Add weak reference for LBDL_MANT_DIG==53 targets.
* src/imprecise.c:
. Remove the coshl, sinhl, and tanhl kludge.
* src/e_coshl.c:
. ld80 and ld128 implementation of coshl().
* src/e_sinhl.c:
. ld80 and ld128 implementation of sinhl().
* src/s_tanhl.c:
. ld80 and ld128 implementation of tanhl().
Obtained from: bde (mostly), das and kargl
These are weak and so can be replaced by other versions in applications
that choose to do so, and will give a linker warning when used so that
applications that rely on the extra precision can avoid them.
Note that since the C/C++ specs only guarantee that long double has
precision equal to double, code that actually relies on these functions
having greater precision is unportable at best and broken at worst.
are workarounds for various symptoms of the problem described in clang
bugs 3929, 8100, 8241, 10409, and 12958.
The regression tests did their job: they failed, someone brought it
up on the mailing lists, and then the issue got ignored for 6 months.
Oops. There may still be some regressions for functions we don't have
test coverage for yet.
use softfloat.
Thanks to Ian Lepore for testing and debugging this patch. The fenv
regression tests pass (at least for Ian's arm chip) with this change.
exp(x) scaled down by some factor, and the challenge is doing this
accurately when exp(x) would overflow. This change replaces all of
the tricks we've been using with common __ldexp_exp() and
__ldexp_cexp() routines that handle all the scaling.
bde plans to improve on this further by moving the guts of exp() into
k_exp.c and handling the scaling in a more direct manner. But the
current approach is simple and adequate for now.
with r219571 and re-enable building of cbrtl.
Implement the long double version for the cube root function, cbrtl.
The algorithm uses Newton's iterations with a crude estimate of the
cube root to converge to a result.
Reviewed by: bde
Approved by: das
1. architecture-specific files
2. long double format-specific files
3. bsdsrc
4. src
5. man
The original order was virtually the opposite of this.
This should not cause any functional changes at this time. The
difference is only significant when one wants to override, say, a
generic foo.c with a more specialized foo.c (as opposed to foo.S).
and trunc() to the corresponding long double functions. This is not
just an optimization for these arches. The full long double functions
have a wrong value for `huge', and the arches without full long doubles
depended on it being wrong.
adds two new directories in msun: ld80 and ld128. These are for
long double functions specific to the 80-bit long double format
used on x86-derived architectures, and the 128-bit format used on
sparc64, respectively.
Warning, after symbol versioning is enabled, going back is not easy
(use WITHOUT_SYMVER at your own risk).
Change the default thread library to libthr.
There most likely still needs to be a version bump for at least the
thread libraries. If necessary, this will happen later.