This reduces build output, need for recalculating paths, and makes it clearer
which paths are relative to what areas in the source tree. The change in
performance over a locally mounted UFS filesystem was negligible in my testing,
but this may more positively impact other filesystems like NFS.
LIBC_SRCTOP was left alone so Juniper (and other users) can continue to
manipulate lib/libc/Makefile (and other Makefile.inc's under lib/libc) as
include Makefiles with custom options.
Discussed with: marcel, sjg
MFC after: 1 week
Reviewed by: emaste
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D9207
As far as I can tell this was introduced in r72406 and updated in several
subsequent revisions, but the lib/locale directory it referenced never
existed.
Reviewed by: ngie
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D9252
This unbreaks the build because the assembly is written for x64.
MFC after: 3 weeks
X-MFC with: r312418
Pointyhat to: ngie
Reported by: Jenkins (i386 job)
Sponsored by: Dell EMC Isilon
The effect at runtime is negligible as the hyperv timer isn't available
except when hyperv is loaded.
This is a prerequisite for conditionalizing the header build/install out
of the build
MFC after: 3 weeks
Reviewed by: sephe
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D9242
- Add RATELIMIT kernel configuration keyword which must be set to
enable the new functionality.
- Add support for hardware driven, Receive Side Scaling, RSS aware, rate
limited sendqueues and expose the functionality through the already
established SO_MAX_PACING_RATE setsockopt(). The API support rates in
the range from 1 to 4Gbytes/s which are suitable for regular TCP and
UDP streams. The setsockopt(2) manual page has been updated.
- Add rate limit function callback API to "struct ifnet" which supports
the following operations: if_snd_tag_alloc(), if_snd_tag_modify(),
if_snd_tag_query() and if_snd_tag_free().
- Add support to ifconfig to view, set and clear the IFCAP_TXRTLMT
flag, which tells if a network driver supports rate limiting or not.
- This patch also adds support for rate limiting through VLAN and LAGG
intermediate network devices.
- How rate limiting works:
1) The userspace application calls setsockopt() after accepting or
making a new connection to set the rate which is then stored in the
socket structure in the kernel. Later on when packets are transmitted
a check is made in the transmit path for rate changes. A rate change
implies a non-blocking ifp->if_snd_tag_alloc() call will be made to the
destination network interface, which then sets up a custom sendqueue
with the given rate limitation parameter. A "struct m_snd_tag" pointer is
returned which serves as a "snd_tag" hint in the m_pkthdr for the
subsequently transmitted mbufs.
2) When the network driver sees the "m->m_pkthdr.snd_tag" different
from NULL, it will move the packets into a designated rate limited sendqueue
given by the snd_tag pointer. It is up to the individual drivers how the rate
limited traffic will be rate limited.
3) Route changes are detected by the NIC drivers in the ifp->if_transmit()
routine when the ifnet pointer in the incoming snd_tag mismatches the
one of the network interface. The network adapter frees the mbuf and
returns EAGAIN which causes the ip_output() to release and clear the send
tag. Upon next ip_output() a new "snd_tag" will be tried allocated.
4) When the PCB is detached the custom sendqueue will be released by a
non-blocking ifp->if_snd_tag_free() call to the currently bound network
interface.
Reviewed by: wblock (manpages), adrian, gallatin, scottl (network)
Differential Revision: https://reviews.freebsd.org/D3687
Sponsored by: Mellanox Technologies
MFC after: 3 months
sources to return timestamps when SO_TIMESTAMP is enabled. Two additional
clock sources are:
o nanosecond resolution realtime clock (equivalent of CLOCK_REALTIME);
o nanosecond resolution monotonic clock (equivalent of CLOCK_MONOTONIC).
In addition to this, this option provides unified interface to get bintime
(equivalent of using SO_BINTIME), except it also supported with IPv6 where
SO_BINTIME has never been supported. The long term plan is to depreciate
SO_BINTIME and move everything to using SO_TS_CLOCK.
Idea for this enhancement has been briefly discussed on the Net session
during dev summit in Ottawa last June and the general input was positive.
This change is believed to benefit network benchmarks/profiling as well
as other scenarios where precise time of arrival measurement is necessary.
There are two regression test cases as part of this commit: one extends unix
domain test code (unix_cmsg) to test new SCM_XXX types and another one
implementis totally new test case which exchanges UDP packets between two
processes using both conventional methods (i.e. calling clock_gettime(2)
before recv(2) and after send(2)), as well as using setsockopt()+recv() in
receive path. The resulting delays are checked for sanity for all supported
clock types.
Reviewed by: adrian, gnn
Differential Revision: https://reviews.freebsd.org/D9171
of the clang version
This works around breakage on ^/stable/10 when running installworld from
a ^/stable/10 host where the test wouldn't be compiled on the first
go-around and would be missing when make installworld is run.
MFC after: 1 week
PR: 208703
Reported by: emaste
Sponsored by: Dell EMC Isilon
This contains some new testcases in /usr/tests/...:
- .../lib/libc
- .../lib/libthr
- .../lib/msun
- .../sys/kern
Tested on: amd64, i386
MFC after: 1 month
drain timeout handling to historical freebsd behavior.
The primary reason for these changes is the need to have tty_drain() call
ttydevsw_busy() at some reasonable sub-second rate, to poll hardware that
doesn't signal an interrupt when the transmit shift register becomes empty
(which includes virtually all USB serial hardware). Such hardware hangs
in a ttyout wait, because it never gets an opportunity to trigger a wakeup
from the sleep in tty_drain() by calling ttydisc_getc() again, after
handing the last of the buffered data to the hardware.
While researching the history of changes to tty_drain() I stumbled across
some email describing the historical BSD behavior of tcdrain() and close()
on serial ports, and the ability of comcontrol(1) to control timeout
behavior. Using that and some advice from Bruce Evans as a guide, I've
put together these changes to implement the hardware polling and restore
the historical timeout behaviors...
- tty_drain() now calls ttydevsw_busy() in a loop at 10 Hz to accomodate
hardware that requires polling for busy state.
- The "new historical" behavior for draining during close(2) is retained:
the drain timeout is "1 second without making any progress". When the
1-second timeout expires, if the count of bytes remaining in the tty
layer buffer is smaller than last time, the timeout is extended for
another second. Unfortunately, the same logic cannot be extended all
the way down to the hardware, because the interface to that layer is a
simple busy/not-busy indication.
- Due to the previous point, an application that needs a guarantee that
all data has been transmitted must use TIOCDRAIN/tcdrain(3) before
calling close(2).
- The historical behavior of honoring the drainwait setting for TIOCDRAIN
(used by tcdrain(3)) is restored.
- The historical kern.drainwait sysctl to control the global default
drainwait time is restored, but is now named kern.tty_drainwait.
- The historical default drainwait timeout of 300 seconds is restored.
- Handling of TIOCGDRAINWAIT and TIOCSDRAINWAIT ioctls is restored
(this also makes the comcontrol(1) drainwait verb work again).
- Manpages are updated to document these behaviors.
Reviewed by: bde (prior version)