requiring the user to figure it out. So, if you comment out all but the
machine type you are using, you automatically get the bus code just for
your system. (eg DEC_EB164 implies cia, etc). Multiple machine types
still pulls in the appropriate busses. This means, take things like
'controller cia0' out of your config.
Reviewed by: dfr (in principle)
2) s/MODLOAD/KMODLOAD/ to be consistent with the rest of the variables
(KMOD, KMODOWN, KMODGRP, etc) and definition of MODLOAD/UNLOAD in the
Makefile of the ATAPI module
3) textual fixups
the Davicom DM9100 and DM9102 chipsets, including the Jaton Corporation
XPressNet. Datasheet is available from www.davicom8.com.
The DM910x chips are still more tulip clones. The API is reproduced
pretty faithfully, unfortunately the performance is pretty bad. The
transmitter seems to have a lot of problems DMAing multi-fragment
packets. The only way to make it work reliably is to coalesce transmitted
packets into a single contiguous buffer. The Linux driver (written by
Davicom) actually does something similar to this. I can't recomment this
NIC as anything more than a "connectivity solution."
This driver uses newbus and miibus and is supported on both i386
and alpha platforms.
this PHY and the Davicom DM9101 have exactly the same register definitions.
One of them is probably a clone of the other. I'm not sure which.
This is needed for the Davicom DM9102 10/100 PCI ethernet driver which
will be committed shortly.
SiS 900 and SiS 7016 PCI fast ethernet chipsets. Full manuals for the
SiS chips can be found at www.sis.com.tw.
This is a fairly simple chipset. The receiver uses a 128-bit multicast
hash table and single perfect entry for the station address. Transmit and
receive DMA and FIFO thresholds are easily tuneable. Documentation is
pretty decent and performance is not bad, even on my crufty 486. This
driver uses newbus and miibus and is supported on both the i386 and
alpha architectures.
a quick think and discussion among various people some form of some of
these changes will probably be recommitted.
The reversion requested was requested by dg while discussions proceed.
PHK has indicated that he can live with this, and it has been agreed
that some form of some of these changes may return shortly after further
discussion.
MCA SCSI adapters.
bt_mca.c is going to live in sys/dev/buslogic instead of sys/dev/mca
as per a conversation with Peter, Doug and Mike.
Thanks to Andy Farkas <andyf@speednet.com.au> for being such a good
sport and doing all the testing for me (as I don't actually own one
of these cards. Yet.)
new system is integrated with the ISA bus code more cleanly and allows
the future addition of more enumerators such as PnPBIOS and ACPI.
This commit also enables the new pcm driver since it is somewhat tied to
the new PnP code.
the highly non-recommended option ALLOW_BDEV_ACCESS is used.
(bdev access is evil because you don't get write errors reported.)
Kill si_bsize_best before it kills Matt :-)
Use the specfs routines rather having cloned copies in devfs.
UMAPFS_DIAGNOSTIC and UNION_DIAGNOSTIC. Uncommented NULLFS_DIAGNOSTIC.
It is as bogus as the above three but since it is already a new-style
option it is easier to use it than to fix it.
discussed on current.
The following variables are defined (for now):
osname (defaults to "Linux")
Allow users to change the name of the OS as returned by uname(2),
specially added for all those Linux Netscape users and statistics
maniacs :-) We now have what we all wanted!
osrelease (defaults to "2.2.5")
Allow users to change the version of the OS as returned by uname(2).
Since -current supports glibc2.1 now, change the default to 2.2.5
(was 2.0.36).
oss_version (defaults to 198144 [0x030600])
This one will be used by the OSS_GETVERSION ioctl (PR 12917) which I
can commit now that we have the MIB. The default version number is the
lowest version possible with the current 'encoding'.
A note about imprisoned processes (see jail(2)):
These variables are copy-on-write (as suggested by phk). This means that
imprisoned processes will use the system wide value unless it is written/set
by the process. From that moment on, a copy local to the prison will be
used.
A note about the implementation:
I choose to add a single pointer to struct prison, because I didn't like the
idea of changing struct prison every time I come up with a new variable. As
a side effect, the extra storage is only needed when a variable is set from
within the prison. This also minimizes kernel bloat when the Linuxulator is
not used; both compiled in or as a module.
Reviewed by: bde (first version only) and phk
ML6692 PHY. The Micro Linear driver is my own; the ThunderLAN driver is
a port of the NetBSD driver with various hacks. The ML driver is necessary
to support the Olicom OC-2326 ThunderLAN-based NIC.
Also regenerated miidevs.h to pick up the proper 'obtained from'
revision string.
PCI fast ethernet controller. Currently, the only card I know that uses
this chip is the D-Link DFE-550TX. (Don't ask me where to buy these: the
only cards I have are samples sent to me by D-Link.)
This driver is the first to make use of the miibus code once I'm sure
it all works together nicely, I'll start converting the other drivers.
The Sundance chip is a clone of the 3Com 3c90x Etherlink XL design
only with its own register layout. Support is provided for ifmedia,
hardware multicast filtering, bridging and promiscuous mode.
MII-compliant PHY drivers. Many 10/100 ethernet NICs available today
either use an MII transceiver or have built-in transceivers that can
be programmed using an MII interface. It makes sense then to separate
this support out into common code instead of duplicating it in all
of the NIC drivers. The mii code also handles all of the media
detection, selection and reporting via the ifmedia interface.
This is basically the same code from NetBSD's /sys/dev/mii, except
it's been adapted to FreeBSD's bus architecture. The advantage to this
is that it automatically allows everything to be turned into a
loadable module. There are some common functions for use in drivers
once an miibus has been attached (mii_mediachg(), mii_pollstat(),
mii_tick()) as well as individual PHY drivers. There is also a
generic driver for all PHYs that aren't handled by a specific driver.
It's possible to do this because all 10/100 PHYs implement the same
general register set in addition to their vendor-specific register
sets, so for the most part you can use one driver for pretty much
any PHY. There are a couple of oddball exceptions though, hence
the need to have specific drivers.
There are two layers: the generic "miibus" layer and the PHY driver
layer. The drivers are child devices of "miibus" and the "miibus" is
a child of a given NIC driver. The "miibus" code and the PHY drivers
can actually be compiled and kldoaded as completely separate modules
or compiled together into one module. For the moment I'm using the
latter approach since the code is relatively small.
Currently there are only three PHY drivers here: the generic driver,
the built-in 3Com XL driver and the NS DP83840 driver. I'll be adding
others later as I convert various NIC drivers to use this code.
I realize that I'm cvs adding this stuff instead of importing it
onto a separate vendor branch, but in my opinion the import approach
doesn't really offer any significant advantage: I'm going to be
maintaining this stuff and writing my own PHY drivers one way or
the other.
events, in order to pave the way for removing a number of the ad-hoc
implementations currently in use.
Retire the at_shutdown family of functions and replace them with
new event handler lists.
Rework kern_shutdown.c to take greater advantage of the use of event
handlers.
Reviewed by: green