Print a warning if a requested interface name is longer than
IFNAMSIZ.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mac_enforce_system toggle, rather than several separate toggles.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
permit MAC policies to augment the security protections on sysctl()
operations. This is not really a wonderful entry point, as we
only have access to the MIB of the target sysctl entry, rather than
the more useful entry name, but this is sufficient for policies
like Biba that wish to use their notions of privilege or integrity
to prevent inappropriate sysctl modification. Affects MAC kernels
only. Since SYSCTL_LOCK isn't in sysctl.h, just kern_sysctl.c,
we can't assert the SYSCTL subsystem lockin the MAC Framework.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
permits MAC modules to augment system security decisions regarding
the reboot() system call, if MAC is compiled into the kernel.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
mac_check_system_swapon(), to reflect the fact that the primary
object of this change is the running kernel as a whole, rather
than just the vnode. We'll drop additional checks of this
class into the same check namespace, including reboot(),
sysctl(), et al.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
This policy can be loaded dynamically, and assigns each process a
partition number, as well as permitting processes to operate outside
the partition. Processes contained in a partition can only "see"
processes inside the same partition, so it's a little like jail.
The partition of a user can be set using the label mechanisms in
login.conf. This sample policy is a good starting point for developers
wanting to learn about how to produce labeled policies, as it labels
only one kernel object, the process credential.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
to merge mac_te, since the SEBSD port of SELinux/FLASK provides a much
more mature Type Enforcement implementation. This changes the size
of the on-disk 'struct oldmac' EA labels, which may require regeneration.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
perform authorization checks during swapon() events; policies
might choose to enforce protections based on the credential
requesting the swap configuration, the target of the swap operation,
or other factors such as internal policy state.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
to parse their own label elements (some cleanup to occur here in the
future to use the newly added kernel strsep()). Policies now
entirely encapsulate their notion of label in the policy module.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
to use a modified notion of 'struct mac', and flesh out the new variation
system calls (almost identical to existing ones except that they permit
a pid to be specified for process label retrieval, and don't follow
symlinks). This generalizes the label API so that the framework is
now almost entirely policy-agnostic.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
on all label parsing occuring in userland, and knowledge of the loaded
policies in the user libraries. This revision of the API pushes that
parsing into the kernel, avoiding the need for shared library support
of policies in userland, permitting statically linked binaries (such
as ls, ps, and ifconfig) to use MAC labels. In these API revisions,
high level parsing of the MAC label is done in the MAC Framework,
and interpretation of label elements is delegated to the MAC policy
modules. This permits modules to export zero or more label elements
to user space if desired, and support them in the manner they want
and with the semantics they want. This is believed to be the final
revision of this interface: from the perspective of user applications,
the API has actually not changed, although the ABI has.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
Various cleanups, no functional changes:
- Fix a type in an entry point stub, socket checks accept
sockets, not vnodes.
- Trailing whitespace
- Entry point sort order
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
copy elements of one Biba or MLS label to another based on the flags
on the source label element. Use this instead of
mac_{biba,mls}_{single,range}() to simplify the existing code, as
well as support partial label updates (we don't update if none is
requested).
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
policies remains the same: subjects and objects are labeled for
integrity or sensitivity, and a dominance operator determines whether
or not subject/object accesses are permitted to limit inappropriate
information flow. Compartments are a non-hierarchal component to
the label, so add a bitfield to the label element for each, and a
set check as part of the dominance operator. This permits the
implementation of "need to know" elements of MLS.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
range on them, leaving process credentials as the only kernel
objects with label ranges in the Biba and MLS policies. We
weren't using the range in any access control decisions, so this
lets us garbage collect effectively unused code.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
collapse the two cases more cleanly: rather than wrapping an access
check around open, simply provide the open implementation for the
access vector entry. No functional change.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
we just break out some of the tests better. Minor change in that
we now better support incremental update of labels.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
instead of the default biba/high, mls/low, making it easier to use
ptys with these policies. This isn't the final solution, but does
help.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
compile fail. MAC_MAX_POLICIES should always be defined, or we have
bigger problems at hand.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
unregister. Under some obscure (perhaps demented) circumstances,
this can result in a panic if a policy is unregistered, and then someone
foolishly unregisters it again.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
that use it. Specifically, vop_stdlock uses the lock pointed to by
vp->v_vnlock. By default, getnewvnode sets up vp->v_vnlock to
reference vp->v_lock. Filesystems that wish to use the default
do not need to allocate a lock at the front of their node structure
(as some still did) or do a lockinit. They can simply start using
vn_lock/VOP_UNLOCK. Filesystems that wish to manage their own locks,
but still use the vop_stdlock functions (such as nullfs) can simply
replace vp->v_vnlock with a pointer to the lock that they wish to
have used for the vnode. Such filesystems are responsible for
setting the vp->v_vnlock back to the default in their vop_reclaim
routine (e.g., vp->v_vnlock = &vp->v_lock).
In theory, this set of changes cleans up the existing filesystem
lock interface and should have no function change to the existing
locking scheme.
Sponsored by: DARPA & NAI Labs.
checks from the MAC tree: allow policies to perform access control
for the ability of a process to send and receive data via a socket.
At some point, we might also pass in additional address information
if an explicit address is requested on send.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
seperate entry points for each occasion:
mac_check_vnode_mmap() Check at initial mapping
mac_check_vnode_mprotect() Check at mapping protection change
mac_check_vnode_mmap_downgrade() Determine if a mapping downgrade
should take place following
subject relabel.
Implement mmap() and mprotect() entry points for labeled vnode
policies. These entry points are currently not hooked up to the
VM system in the base tree. These changes improve the consistency
of the access control interface and offer more flexibility regarding
limiting access to vnode mmaping.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
flags so that we can call malloc with M_NOWAIT if necessary, avoiding
potential sleeps while holding mutexes in the TCP syncache code.
Similar to the existing support for mbuf label allocation: if we can't
allocate all the necessary label store in each policy, we back out
the label allocation and fail the socket creation. Sync from MAC tree.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
devfs VOP symlink creation by introducing a new entry point to determine
the label of the devfs_dirent prior to allocation of a vnode for the
symlink.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
point that instruments the creation of hard links. Policy implementations
to follow.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
to mbuf label initialization, that functionality was never merged to
the main tree. Go ahead and merge that functionality now. Note that
this requires policy modules to accept the case where the label
element may be destroyed even if init has not succeeded on it (in
the event that policy failed the init). This will shortly also
apply to sockets.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
order used in mac_policy.h and elsewhere. Sort order is basically
"by operation category", then "alphabetically by object". Sync to
MAC tree.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
externalization, and cred label life cycle events to entirely above
devfs and vnode events. Sync from MAC tree.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
entry points to better match the entry point ordering in mac_policy.h.
Big diff, no functional change; merge from the MAC tree.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
- If a policy isn't registered when a policy module unloads, silently
succeed.
- Hold the policy list lock across more of the validity tests to avoid
races.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
- Change mpo_init_foo(obj, label) and mpo_destroy_foo(obj, label) policy
entry points to mpo_init_foo_label(label) and
mpo_destroy_foo_label(label). This will permit the use of the same
entry points for holding temporary type-specific label during
internalization and externalization, as well as for caching purposes.
- Because of this, break out mpo_{init,destroy}_socket() and
mpo_{init,destroy}_mount() into seperate entry points for socket
main/peer labels and mount main/fs labels.
- Since the prototype for label initialization is the same across almost
all entry points, implement these entry points using common
implementations for Biba, MLS, and Test, reducing the number of
almost identical looking functions.
This simplifies policy implementation, as well as preparing us for the
merge of the new flexible userland API for managing labels on objects.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories