<stdint.h>. Previously, parts were defined in <machine/ansi.h> and
<machine/limits.h>. This resulted in two problems:
(1) Defining macros in <machine/ansi.h> gets in the way of that
header only defining types.
(2) Defining C99 limits in <machine/limits.h> adds pollution to
<limits.h>.
userland for libc/gmon to compile, so the typedef in <machine/types.h>
isn't good enough. This is really ugly since we end up with the
actual value which uintfptr_t is typedef'd from, in multiple places.
This is bug for bug compatible with the other FreeBSD architectures.
Noticed by: sparc64 tinderbox
basically maps all of physical memory 1:1 to a range of virtual addresses
outside of normal kva. The advantage of doing this instead of accessing
phsyical addresses directly is that memory accesses will go through the
data cache, and will participate in the normal cache coherency algorithm
for invalidating lines in our own and in other cpus' data caches. So
we don't have to flush the cache manually or send IPIs to do so on other
cpus. Also, since the mappings never change, we don't have to flush them
from the tlb manually.
This makes pmap_copy_page and pmap_zero_page MP safe, allowing the idle
zero proc to run outside of giant.
Inspired by: ia64
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).
of them, and couple them by always performing all operations on all
present IOMMUs. This is required because with the current API there
is no way to determine on which bus a busdma operation is performed.
While being there, clean up the iommu code a bit.
This should be a step in the direction of allow some of larger machines
to work; tests have shown that there still seem to be problems left.
o Assert that the page queues lock is held in vm_page_unwire().
o Make vm_page_lock_queues() and vm_page_unlock_queues() visible
to kernel loadable modules.
choosethread() in MI C code instead of doing it in in assembly in all the
various cpu_switch() functions. This fixes problems on ia64 and sparc64.
Reviewed by: julian, peter, benno
Tested on: i386, alpha, sparc64
itself; this causes undefined behaviour on UltraSPARCs. In particular,
the interrupt packet data words will not necessarily be delivered
correctly, which would result in a crash.
This bug also caused the cache-flushing work to be done twice on the
triggering CPU (when it did not cause crashes).
Reviewed by: jake
hardly MD, since all our platforms share the same macro. It's not
really compiler dependent either, but this helps in reducing
<machine/ansi.h> to only type definitions.
threaded VM pagezero kthread outside of Giant. For some platforms, this
is really easy since it can just use the direct mapped region. For others,
IPI sending is involved or there are other issues, so grab Giant when
needed.
We still have preemption issues to deal with, but Alan Cox has an
interesting suggestion on how to minimize the problem on x86.
Use Luigi's hack for preserving the (lack of) priority.
Turn the idle zeroing back on since it can now actually do something useful
outside of Giant in many cases.
pmap_swapin_proc/pmap_swapout_proc functions from the MD pmap code
and use a single equivalent MI version. There are other cleanups
needed still.
While here, use the UMA zone hooks to keep a cache of preinitialized
proc structures handy, just like the thread system does. This eliminates
one dependency on 'struct proc' being persistent even after being freed.
There are some comments about things that can be factored out into
ctor/dtor functions if it is worth it. For now they are mostly just
doing statistics to get a feel of how it is working.
we just have to deal with the kstack when told to. We do not have a
UMA-managed cache for the proc struct and its associated upage yet. So,
go back to the old lazy mechanism. Note that if UMA destroys pages that
used to contain proc structures, we'll lose the corresponding upage
forever. (zones never did this - once a page was allocated, it stayed
attached to the proc zone forever)
and function) with existing configuration choices. Arguably if
ALT_BREAK_TO_DEBUGGER was present, so should have been
BREAK_TO_DEBUGGER. Regardless, it broke the option sort order in
these kernel configuration files.
Requested by: bde
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..