yield() and sched_yield() syscalls. Every scheduler has its own way
to relinquish cpu, the ULE and CORE schedulers have two internal run-
queues, a timesharing thread which calls yield() syscall should be
moved to inactive queue.
I picked it up again. The scheduler is forked from ULE, but the
algorithm to detect an interactive process is almost completely
different with ULE, it comes from Linux paper "Understanding the
Linux 2.6.8.1 CPU Scheduler", although I still use same word
"score" as a priority boost in ULE scheduler.
Briefly, the scheduler has following characteristic:
1. Timesharing process's nice value is seriously respected,
timeslice and interaction detecting algorithm are based
on nice value.
2. per-cpu scheduling queue and load balancing.
3. O(1) scheduling.
4. Some cpu affinity code in wakeup path.
5. Support POSIX SCHED_FIFO and SCHED_RR.
Unlike scheduler 4BSD and ULE which using fuzzy RQ_PPQ, the scheduler
uses 256 priority queues. Unlike ULE which using pull and push, the
scheduelr uses pull method, the main reason is to let relative idle
cpu do the work, but current the whole scheduler is protected by the
big sched_lock, so the benefit is not visible, it really can be worse
than nothing because all other cpu are locked out when we are doing
balancing work, which the 4BSD scheduelr does not have this problem.
The scheduler does not support hyperthreading very well, in fact,
the scheduler does not make the difference between physical CPU and
logical CPU, this should be improved in feature. The scheduler has
priority inversion problem on MP machine, it is not good for
realtime scheduling, it can cause realtime process starving.
As a result, it seems the MySQL super-smack runs better on my
Pentium-D machine when using libthr, despite on UP or SMP kernel.
if the specified priority is zero. This avoids a race where the calling
thread could read a snapshot of it's current priority, then a different
thread could change the first thread's priority, then the original thread
would call sched_prio() inside msleep() undoing the change made by the
second thread. I used a priority of zero as no thread that calls msleep()
or tsleep() should be specifying a priority of zero anyway.
The various places that passed 'curthread->td_priority' or some variant
as the priority now pass 0.
schedulers a bit to ensure more correct handling of priorities and fewer
priority inversions:
- Add two functions to the sched(9) API to handle priority lending:
sched_lend_prio() and sched_unlend_prio(). The turnstile code uses these
functions to ask the scheduler to lend a thread a set priority and to
tell the scheduler when it thinks it is ok for a thread to stop borrowing
priority. The unlend case is slightly complex in that the turnstile code
tells the scheduler what the minimum priority of the thread needs to be
to satisfy the requirements of any other threads blocked on locks owned
by the thread in question. The scheduler then decides where the thread
can go back to normal mode (if it's normal priority is high enough to
satisfy the pending lock requests) or it it should continue to use the
priority specified to the sched_unlend_prio() call. This involves adding
a new per-thread flag TDF_BORROWING that replaces the ULE-only kse flag
for priority elevation.
- Schedulers now refuse to lower the priority of a thread that is currently
borrowing another therad's priority.
- If a scheduler changes the priority of a thread that is currently sitting
on a turnstile, it will call a new function turnstile_adjust() to inform
the turnstile code of the change. This function resorts the thread on
the priority list of the turnstile if needed, and if the thread ends up
at the head of the list (due to having the highest priority) and its
priority was raised, then it will propagate that new priority to the
owner of the lock it is blocked on.
Some additional fixes specific to the 4BSD scheduler include:
- Common code for updating the priority of a thread when the user priority
of its associated kse group has been consolidated in a new static
function resetpriority_thread(). One change to this function is that
it will now only adjust the priority of a thread if it already has a
time sharing priority, thus preserving any boosts from a tsleep() until
the thread returns to userland. Also, resetpriority() no longer calls
maybe_resched() on each thread in the group. Instead, the code calling
resetpriority() is responsible for calling resetpriority_thread() on
any threads that need to be updated.
- schedcpu() now uses resetpriority_thread() instead of just calling
sched_prio() directly after it updates a kse group's user priority.
- sched_clock() now uses resetpriority_thread() rather than writing
directly to td_priority.
- sched_nice() now updates all the priorities of the threads after the
group priority has been adjusted.
Discussed with: bde
Reviewed by: ups, jeffr
Tested on: 4bsd, ule
Tested on: i386, alpha, sparc64
fully initialed when the pmap layer tries to call sched_pini() early in the
boot and results in an quick panic. Use ke_pinned instead as was originally
done with Tor's patch.
Approved by: julian
scheduler specific extension to it. Put it in the extension as
the implimentation details of how the pinning is done needn't be visible
outside the scheduler.
Submitted by: tegge (of course!) (with changes)
MFC after: 3 days
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week
specify "us" as the thread not the process/ksegrp/kse.
You can always find the others from the thread but the converse is not true.
Theorotically this would lead to runtime being allocated to the wrong
entity in some cases though it is not clear how often this actually happenned.
(would only affect threaded processes and would probably be pretty benign,
but it WAS a bug..)
Reviewed by: peter
since they are only accessed by curthread and thus do not need any
locking.
- Move pr_addr and pr_ticks out of struct uprof (which is per-process)
and directly into struct thread as td_profil_addr and td_profil_ticks
as these variables are really per-thread. (They are used to defer an
addupc_intr() that was too "hard" until ast()).
sched_add() rather than just doing it in sched_wakeup(). The old
ithread preemption code used to set NEEDRESCHED unconditionally if it
didn't preempt which masked this bug in SCHED_4BSD.
Noticed by: jake
Reported by: kensmith, marcel
than as one-off hacks in various other parts of the kernel:
- Add a function maybe_preempt() that is called from sched_add() to
determine if a thread about to be added to a run queue should be
preempted to directly. If it is not safe to preempt or if the new
thread does not have a high enough priority, then the function returns
false and sched_add() adds the thread to the run queue. If the thread
should be preempted to but the current thread is in a nested critical
section, then the flag TDF_OWEPREEMPT is set and the thread is added
to the run queue. Otherwise, mi_switch() is called immediately and the
thread is never added to the run queue since it is switch to directly.
When exiting an outermost critical section, if TDF_OWEPREEMPT is set,
then clear it and call mi_switch() to perform the deferred preemption.
- Remove explicit preemption from ithread_schedule() as calling
setrunqueue() now does all the correct work. This also removes the
do_switch argument from ithread_schedule().
- Do not use the manual preemption code in mtx_unlock if the architecture
supports native preemption.
- Don't call mi_switch() in a loop during shutdown to give ithreads a
chance to run if the architecture supports native preemption since
the ithreads will just preempt DELAY().
- Don't call mi_switch() from the page zeroing idle thread for
architectures that support native preemption as it is unnecessary.
- Native preemption is enabled on the same archs that supported ithread
preemption, namely alpha, i386, and amd64.
This change should largely be a NOP for the default case as committed
except that we will do fewer context switches in a few cases and will
avoid the run queues completely when preempting.
Approved by: scottl (with his re@ hat)
switch to. If a non-NULL thread pointer is passed in, then the CPU will
switch to that thread directly rather than calling choosethread() to pick
a thread to choose to.
- Make sched_switch() aware of idle threads and know to do
TD_SET_CAN_RUN() instead of sticking them on the run queue rather than
requiring all callers of mi_switch() to know to do this if they can be
called from an idlethread.
- Move constants for arguments to mi_switch() and thread_single() out of
the middle of the function prototypes and up above into their own
section.
sleep queue interface:
- Sleep queues attempt to merge some of the benefits of both sleep queues
and condition variables. Having sleep qeueus in a hash table avoids
having to allocate a queue head for each wait channel. Thus, struct cv
has shrunk down to just a single char * pointer now. However, the
hash table does not hold threads directly, but queue heads. This means
that once you have located a queue in the hash bucket, you no longer have
to walk the rest of the hash chain looking for threads. Instead, you have
a list of all the threads sleeping on that wait channel.
- Outside of the sleepq code and the sleep/cv code the kernel no longer
differentiates between cv's and sleep/wakeup. For example, calls to
abortsleep() and cv_abort() are replaced with a call to sleepq_abort().
Thus, the TDF_CVWAITQ flag is removed. Also, calls to unsleep() and
cv_waitq_remove() have been replaced with calls to sleepq_remove().
- The sched_sleep() function no longer accepts a priority argument as
sleep's no longer inherently bump the priority. Instead, this is soley
a propery of msleep() which explicitly calls sched_prio() before
blocking.
- The TDF_ONSLEEPQ flag has been dropped as it was never used. The
associated TDF_SET_ONSLEEPQ and TDF_CLR_ON_SLEEPQ macros have also been
dropped and replaced with a single explicit clearing of td_wchan.
TD_SET_ONSLEEPQ() would really have only made sense if it had taken
the wait channel and message as arguments anyway. Now that that only
happens in one place, a macro would be overkill.