Use the correct number of handles for multihandle returns.
Very, very, rarely on some SMP systems we've seen an 'unstable' type
in the response queue. I dunno whether or not it's a bug in our
handling, or whether there's a cache incoherency issue, but
try to guard against it.
MFC after: 2 weeks
I was unable to test this as the PAE kernel crashed with a "cannot copy
LDT" before coming up. When this gets a bit more testing, I'll fix the PAE
conf file to allow isp devices.
PR: 59728
the geometry code to grab a mutex that prohibits any driver on the
stack below it from sleeping, it's not safe to allow anything in
the top half of isp to sleep (excepting the thread that Fibre Channel
instances use to re-scan loops/fabrics).
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
(1 << 24) - 2 instead of 1 << 24, which it was obviously intended to
be). This fixes SBus isp(4)s on sparc64 machines.
Report and testing: Marius Strobl <marius@alchemy.franken.de>
to build the kernel. It doesn't affect the operation if gcc.
Most of the changes are just adding __INTEL_COMPILER to #ifdef's, as
icc v8 may define __GNUC__ some parts may look strange but are
necessary.
Additional changes:
- in_cksum.[ch]:
* use a generic C version instead of the assembly version in the !gcc
case (ASM code breaks with the optimizations icc does)
-> no bad checksums with an icc compiled kernel
Help from: andre, grehan, das
Stolen from: alpha version via ppc version
The entire checksum code should IMHO be replaced with the DragonFly
version (because it isn't guaranteed future revisions of gcc will
include similar optimizations) as in:
---snip---
Revision Changes Path
1.12 +1 -0 src/sys/conf/files.i386
1.4 +142 -558 src/sys/i386/i386/in_cksum.c
1.5 +33 -69 src/sys/i386/include/in_cksum.h
1.5 +2 -0 src/sys/netinet/igmp.c
1.6 +0 -1 src/sys/netinet/in.h
1.6 +2 -0 src/sys/netinet/ip_icmp.c
1.4 +3 -4 src/contrib/ipfilter/ip_compat.h
1.3 +1 -2 src/sbin/natd/icmp.c
1.4 +0 -1 src/sbin/natd/natd.c
1.48 +1 -0 src/sys/conf/files
1.2 +0 -1 src/sys/conf/files.amd64
1.13 +0 -1 src/sys/conf/files.i386
1.5 +0 -1 src/sys/conf/files.pc98
1.7 +1 -1 src/sys/contrib/ipfilter/netinet/fil.c
1.10 +2 -3 src/sys/contrib/ipfilter/netinet/ip_compat.h
1.10 +1 -1 src/sys/contrib/ipfilter/netinet/ip_fil.c
1.7 +1 -1 src/sys/dev/netif/txp/if_txp.c
1.7 +1 -1 src/sys/net/ip_mroute/ip_mroute.c
1.7 +1 -2 src/sys/net/ipfw/ip_fw2.c
1.6 +1 -2 src/sys/netinet/igmp.c
1.4 +158 -116 src/sys/netinet/in_cksum.c
1.6 +1 -1 src/sys/netinet/ip_gre.c
1.7 +1 -2 src/sys/netinet/ip_icmp.c
1.10 +1 -1 src/sys/netinet/ip_input.c
1.10 +1 -2 src/sys/netinet/ip_output.c
1.13 +1 -2 src/sys/netinet/tcp_input.c
1.9 +1 -2 src/sys/netinet/tcp_output.c
1.10 +1 -1 src/sys/netinet/tcp_subr.c
1.10 +1 -1 src/sys/netinet/tcp_syncache.c
1.9 +1 -2 src/sys/netinet/udp_usrreq.c
1.5 +1 -2 src/sys/netinet6/ipsec.c
1.5 +1 -2 src/sys/netproto/ipsec/ipsec.c
1.5 +1 -1 src/sys/netproto/ipsec/ipsec_input.c
1.4 +1 -2 src/sys/netproto/ipsec/ipsec_output.c
and finally remove
sys/i386/i386 in_cksum.c
sys/i386/include in_cksum.h
---snip---
- endian.h:
* DTRT in C++ mode
- quad.h:
* we don't use gcc v1 anymore, remove support for it
Suggested by: bde (long ago)
- assym.h:
* avoid zero-length arrays (remove dependency on a gcc specific
feature)
This change changes the contents of the object file, but as it's
only used to generate some values for a header, and the generator
knows how to handle this, there's no impact in the gcc case.
Explained by: bde
Submitted by: Marius Strobl <marius@alchemy.franken.de>
- aicasm.c:
* minor change to teach it about the way icc spells "-nostdinc"
Not approved by: gibbs (no reply to my mail)
- bump __FreeBSD_version (lang/icc needs to know about the changes)
Incarnations of this patch survive gcc compiles since a loooong time,
I use it on my desktop. An icc compiled kernel works since Nov. 2003
(exceptions: snd_* if used as modules), it survives a build of the
entire ports collection with icc.
Parts of this commit contains suggestions or submissions from
Marius Strobl <marius@alchemy.franken.de>.
Reviewed by: -arch
Submitted by: netchild
Introduce d_version field in struct cdevsw, this must always be
initialized to D_VERSION.
Flip sense of D_NOGIANT flag to D_NEEDGIANT, this involves removing
four D_NOGIANT flags and adding 145 D_NEEDGIANT flags.
Free approx 86 major numbers with a mostly automatically generated patch.
A number of strategic drivers have been left behind by caution, and a few
because they still (ab)use their major number.
seems to work well in RELENG_4. However, 5.X locking foo means that I'll
have to do some quick redesign.
Add ioctl handlers for ISP_GETROLE and ISP_SETROLE ioctls.
bit for this being the last CTIO2. It didn't matter since it really was the
last CTIO2 and the resources recycled, but still....
Add in CTIO3 define for future DAC work.
Until we can have perfect knowledge that all callers above us think it's okay
for us to sleep, releasing *our* locks of course, we don't dare try and sleep.
provide no methods does not make any sense, and is not used by any
driver.
It is a pretty hard to come up with even a theoretical concept of
a device driver which would always fail open and close with ENODEV.
Change the defaults to be nullopen() and nullclose() which simply
does nothing.
Remove explicit initializations to these from the drivers which
already used them.
fixes a longstanding issue WRT resetting the chip after startup- it
would fail if we were connected as an F-port to a switch. If we
were connected as an F-port, we got assigned a hard loop ID of 255,
which is really a bogus loop id. Then when we turned around to
reset ourselves, the firmware would reject the ICB_INIT request
because the loop id was bogus. *sputter*
Minor fixlet from somebody in NetBSD with too much time on their
hands (dma -> DMA).
Add two new arguments to bus_dma_tag_create(): lockfunc and lockfuncarg.
Lockfunc allows a driver to provide a function for managing its locking
semantics while using busdma. At the moment, this is used for the
asynchronous busdma_swi and callback mechanism. Two lockfunc implementations
are provided: busdma_lock_mutex() performs standard mutex operations on the
mutex that is specified from lockfuncarg. dftl_lock() is a panic
implementation and is defaulted to when NULL, NULL are passed to
bus_dma_tag_create(). The only time that NULL, NULL should ever be used is
when the driver ensures that bus_dmamap_load() will not be deferred.
Drivers that do not provide their own locking can pass
busdma_lock_mutex,&Giant args in order to preserve the former behaviour.
sparc64 and powerpc do not provide real busdma_swi functions, so this is
largely a noop on those platforms. The busdma_swi on is64 is not properly
locked yet, so warnings will be emitted on this platform when busdma
callback deferrals happen.
If anyone gets panics or warnings from dflt_lock() being called, please
let me know right away.
Reviewed by: tmm, gibbs
Devices below may experience a change in geometry.
* Due to a bug, aic(4) never used extended geometry. Changes all drives
>1G to now use extended translation.
* sbp(4) drives exactly 1 GB in size now no longer use extended geometry.
* umass(4) drives exactly 1 GB in size now no longer use extended geometry.
For all other controllers in this commit, this should be a no-op.
Looked over by: scottl
branches:
Initialize struct cdevsw using C99 sparse initializtion and remove
all initializations to default values.
This patch is automatically generated and has been tested by compiling
LINT with all the fields in struct cdevsw in reverse order on alpha,
sparc64 and i386.
Approved by: re(scottl)
doesn't give them enough stack to do much before blowing away the pcb.
This adds MI and MD code to allow the allocation of an alternate kstack
who's size can be speficied when calling kthread_create. Passing the
value 0 prevents the alternate kstack from being created. Note that the
ia64 MD code is missing for now, and PowerPC was only partially written
due to the pmap.c being incomplete there.
Though this patch does not modify anything to make use of the alternate
kstack, acpi and usb are good candidates.
Reviewed by: jake, peter, jhb
Instead, based upon whether ISP_DAC_SUPPORTED is defined, typedef
isp_dma_addr_t appropriately.
If ISP_DAC_SUPPORTRED is defined, the DMA_WD2/DMA_WD3 macros do something
useful, else they define to '0'.
defined, we set the address space limitation to BUS_SPACE_UNRESTRICTED,
otherwise to BUS_SPACE_MAXADDR_32BIT.
If we have a 1240, ULTRA2 or better, or an FC card, the boundary limit
is BUS_SPACE_UNRESTRICTED and segment limit is BUS_SPACE_MAXADDR_32BIT.
The older 1020/1040 cards have boundary and segment limits of
BUS_SPACE_MAXADDR_24BIT.
load f/w images > 0x7fff words), set ISP_FW_ATTR_SCCLUN. We explicitly
don't believe we can find attributes if f/w is < 1.17.0, so we have to
set SCCLUN for the 1.15.37 f/w we're using manually- otherwise every
target will replicate itself across all 16 supported luns for non-SCCLUN
f/w.
Correctly set things up for 23XX and either fast posting or ZIO. The
23XX, it turns out, does not support RIO. If you put a non-zero value
in xfwoptions, this will disable fast posting. If you put ICBXOPT_ZIO
in xfwoptions, then the 23XX will do interrupt delays but post to the
response queue- apparently QLogic *now* believes that reading multiple
handles from registers is less of a win than writing (and delaying)
multiple 64 byte responses to the response queue.
At the end of taking a a good f/w crash dump, send the ISPASYNC_FW_DUMPED
event to the outer layers (who can then do things like wake a user
daemon to *fetch* the crash image, etc.).
fast posting command completion, and fast post CTIO completion,
the upper half of Risc2Host is a copy of mailbox #1- *not*
mailbox #0.
MFC after: 1 day
Through the PITA of endiannness, clock has to be MHz freq << 8.
Don't trust NVRAM on SBus cards.
Set a default initiator ID sensibly.
SBus/ISP now working, what with the change to sbus.c earlier today.
flags include INTR_MPSAFE. Put the flags in a common place so that
both isp_sbus && isp_pci DTRT.
In isp_mbxdma setup, drop any locks prior to calling things like
bus_dmatag_create. This gets rid of these obnoxious WITNESS messages
about 'sleeping with locks held' blah blah blah blah blah.
This code does not imply that SBus cards work yet. They hang for me.
But I can't netboot the latest snapshot on my ultra1e, and things
hang at bus_setup_intr time.
Since I'm offline for a while, I thought I'd toss this in in case somebody
else who has a bit better luck wants to fart around with it. Please try
and wait until I get back to check things in.
Oops; I forgot for previous delta... If we're and FC or ULTRA2 or better
card, we can have a 1024 element request queue instead of 256.
MFC after: 1 week
Remove sim queue freezes for resource shortages. I've had too many
strange race conditions where I freeze on a resource shortage but
never get unfrozen.
Consolidate the remaining sim queue freeze condition (for loopdown)
into an inline with debug messages that allows us to track problems
at ISP_LOGDEBUG0 level easier. Change a bunch of debug messages about
loop down/up conditions to ISP_LOGDEBUG0 level.
Remove dead isp_relsim code.
Change some internal flag stuff for efficiency.
Complain vociferously if we try and use our FC scratch area while it's
busy being used already (I mean, if we don't have solaris' ability
to sleep as an interrupt thread which would allow us to just use
a p/v semaphore, at least *say* when you've just borked yourself).
Add infrastructure to allow overrides of hard loopid && initiator
id from boot variables.
Fix the usual quota of silly bugs:
+ 'ktmature' needs to be per-instance. Argh.
+ When entering isp_watchdog, set intsok to zero, preserving
old value to restore later. It's not nice to try and sleep
from splsoftclock.
+ Fix tick overflow buglet in checking timeout value.
MFC after: 1 week
turns out that there's something of a hole in our new fabric name
server stuff. We ask the name server for entities that have
registered as a specific type. That type is FC-SCSI. If the entity
hasn't performed a REGISTER FC4 TYPES, the fabric nameserver won't
return it.
This brings this driver to a bit of a fork in the road as to what
the right thing to do is. For servicing the needs of accessing
FC-SCSI devices, this method is fine, and to be preferred. It is
extremely unlikely we're interested in fabric devices that *don't*
register correctly. If I ever get around to adding an FC-IP stack,
then asking for devices that have registers as FC-IP types is also
the right thing to do.
So- asking the fabric nameserver for a specific type is fine, *as
long as you are only interested in specific types*. If, on the other
hand, you want to create (as for management tool support) a picture
of everything on the fabric, this is *not* so fine. There are a
large class of FC-SCSI *initiators* who *don't* correctly register,
so we never will *see* them.
Is this a problem? Yes, but only a little one. If we want to do such
management tool support, we should probably run a *different* fabric
nameserver query algorithm. Better yet, we should talk to the management
nameserver in Brocade switches instead of the standard FC-GS-2 fabric
nameserver (which can be unwieldy).
Other changes: if we've overrrides marked, don't set some default
values from reading NVRAM. This allows us to override things like
EXEC throttle without having to ignore NVRAM entirely.
MFC after: 1 week
CAM_QUIRK_HILUN devices we loop thru 32bits of lun. Oops.
Switch to using USEC_DELAY rather than USEC_SLEEP at isp_reset time.
Try to paper around a defect in clients that don't correctly registers
themeselves with the fabric nameserver.
Minor updates for Mirapoint support- they still use code that is not
HANDLE_LOOPSTATE_IN_OUTER_LAYERS, and, surprise surprise, this old
stuff had some bugs in it.
Clean up some target mode stuff.
MFC after: 1 week
topology, speed, loopid, WWPN/WWNN, etc.
Beef up target mode. Add isp_handle_platform_notify_scsi and
isp_handle_platform_notify_fc platform handlers to handle immediate
notifies (isp_handle_platform_notify_scsi is still stubbed out).
In implementation of isp_handle_platform_notify_fc, for IN_ABORT_TASK,
peel off a pending XPT_IMMED_NOTIFY and call xpt_done on it and hope
that somebody upstream is listening.
Make sure on final CTIO2s that we set residual correctly. These are
absolutely crucial. Make sure we set relative offset for each CTIO2
based upon bytes we've already xferred. This is what the private
adjunct datat to the original ATIO is. Note state of command so
we can figure out where to find it if we get an ABORT from the firmware.
Make sure we *always* set CAM_TAG_ACTION_VALID for ATIO2s. Make sure
we keep track of the original lun.
If se sent status (or we're otherwise done with the command), don't
forget to free the adjunct structure.
(so we can, when things get lost, find out who currently is processing
on behalf of this open exchange. Invariably, when things are lost and
wedged, it's CAM).
Keep an atio resource counter locally.
MFC after: 1 week
running ABOUT FIRMWARE with some that were started by BIOS downloads).
Redo CTIO2 dma mapping- use continuation segments instead of multiple
CTIO2s. Thanks to Veritas for sponsoring this work (in a different
context).
MFC after: 1 week
to *not* do flow control based upon resource counts for the firmware.
Increase default immediate notify count to 16.
Change isp_target_async to a function returning an integer.
is not set in the scsi completion status, or if the residual is clearly
nonsense, then this was a command that suffered the loss of one or more
FC frames in the middle of the exchange.
Set HBA_BOTCH and hope it will get retried. It's the only thing we can do.
MFC after: 1 day
lun address modifier of sorts. Only an HP XP-512 seems to have cared.
Fix a few misplaced pointers for the new fabric goop, which has been
demonstrated to work on newer Brocades and McData switches now.
Put in commented out code which would run GFF_ID if the QLogic f/w
allowed it.
Don't whine about not being able to find a handle for a command if it
was a command aborted (by us).
Grumble. I've seen better documented architectures out of Redmond.
Redo fabric evaluation to not use GET ALL NEXT (GA_NXT). Switches seem
to be trying to wriggle out of supporting this well. Instead, use
GID_FT to get a list of Port IDs and then use GPN_ID/GNN_ID to find the
port and node wwn. This should make working on fabrics a bit cleaner and
more stable.
This also caused some cleanup of SNS subcommand canonicalization so that
we can actually check for FS_ACC and FS_RJT, and if we get an FS_RJT,
print out the reason and explanation codes.
We'll keep the old GA_NXT method around if people want to uncomment a
controlling definition in ispvar.h.
This also had us clean up ISPASYNC_FABRICDEV to use a local lportdb argument
and to have the caller explicitly say that a device is at the end of the
fabric list.
MFC after: 1 week
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
stuff was right, but the busdma stuff was massively not right.
Didn't really test on ia64 or i386- don't have the former h/w and my
FreeBSD-current disk is unwell right now. Hope that this is okay.
MFC after: 1 week
soon because it's just getting harder and harder to find switches
that correctly implement the GET ALL NEXT subcommands for the SNS
protocol.
Latch up result out pointer and set a busy flag when we're looking
at the response queue. This allows for a cleaner way to make sure
we don't get multiple CPUs trying to read the same response queue
entries.
Change how isp_handle_other_response returns values (clarity).
Make PORT UNAVAILABLE the same as PORT LOGOUT (force a LIP).
Do some formatting changes.
MFC after: 0 days
it worked- but I ran into a case with a 2204 where commands were being lost
right and left. Best be safe.
For target mode, or things called if we call isp_handle_other response- note
that we might have dropped locks by changing the output pointer so we bail
from the loop. It's the responsibility of the entity dropping the lock to
make sure that we let the f/w know we've read thus far into the response
queue (else we begin processing the same entries again- blech!).
MFC after: 1 day
OUT status. We are, apparently, required to force the f/w to log back in
if we want to try and talk to that disk again. This means either issuing
a LOGIN LOCAL LOOP PORT mailbox command, or by issuing a LIP. I've elected
to issue a LIP because this has a better chance of waking up the disk which
clearly just crashed and burned.
These should not occur at all. If they do, they should be darned rare.
MFC after: 1 week
If you want QLogic to look at a potential f/w problem for FC cards, you really
have to provide them info in the format they expect. This involves dumping
a lot of hardware registers (> 300 16 bit registers) and a lot of SRAM
(> 128KB minimum). Thus all of this code is #ifdef protected which will
become an option so that the memory allocation of where to dump the crash
image is pretty expensive. It's worth it if you have a reproducible problem
because they have some tools that can tell them, given the f/w version,
the precise state of everything.
MFC after: 1 week
disable MWI on 2300
based on function code, set an 'isp_port' for the 2312- it's a
separate instance, but the NVRAM is shared, and the second port's
NVRAM is at offset 256.
+ Enable RIO operation for LVD SCSI cards. This makes a *big* difference
as even under reasonable load we get batched completions of about 30
commands at a time on, say, an ISP1080.
+ Do 'continuation' mailbox commands- this allows us to specify a work
area within the softc and 'continue' repeated mailbox commands. This is
more or less on an ad hoc basis and is currently only used for firmware
loading (which f/w now loads substantially faster becuase the calling
thread is only woken when all the f/w words are loaded- not for each
one of the 40000 f/w words that gets loaded).
+ If we're about to return from isp_intr with a 'bogus interrupt' indication,
and we're not a 23XX card, check to see whether the semaphore register is
currently *2* (not *1* as it should be) and whether there's an async completion
sitting in outgoing mailbox0. This seems to capture cases of lost fast posting
and RIO interrupts that the 12160 && 1080 have been known to pump out under
extreme load (extreme, as in > 250 active commands).
+ FC_SCRATCH_ACQUIRE/FC_SCRATCH_RELEASE macros.
+ Endian correct swizzle/unswizzle of an ATIO2 that has a WWPN in it.
MFC after: 1 week
firmware to delay completion of commands so that it can attempt to batch
a bunch of completions at once- either returning 16 bit handles in mailbox
registers, or in a resposne queue entry that has a whole wad of 16 bit handles.
Distinguish between 2300 and 2312 chipsets- if only because the revisions
on the chips have different meanings.
Add more instrumentation plus ISP_GET_STATS and ISP_CLR_STATS ioctls.
Run up the maximum number of response queue entities we'll look at
per interrupt.
If we haven't set HBA role yet, always return success from isp_fc_runstate.
MFC after: 2 weeks
a GetAllNext response. Otherwise, we won't unswizzle
it correctly. This was found on linux/PPC.
This mandated creating another inline: isp_get_gan_response.
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
If we get a completion status of RQCS_QUEUE_FULL, it means
that the internal queues are full. Other QLogic boards set
the QFULL SCSI status. But *nooooooooooo*, not the 2300.
MFC after: 1 day
appropriate cache flush that provides MEMORY_BARRIER in between handoffs
between host && RISC processor for the shared memory request/response
queues.
Submitted by: dfr@nlsystems.com
to see if there's an interrupt (avoids PCI parity errors
which can occur on the 2312 if you access some registers
from the host at the same time the RISC on the 2312 is
C accessing them).
MFC after: 1 day
per-command component that we *don't* try and pass thru CAM. CAM just
is too risky and too much of a pain- structures get copied, but not
all info of interest can be considered safely transported thru all
consumers (including user space) from the incoming ATIO to the outgoing
CTIO- it's just much safer to have a buddy structure, identified by the
command's tag which *does* make it thru safely.
Pay attention to link speed and report 200MB/s xfer speed for a
23XX card in 2GPs mode.
MFC after: 1 week
once so there isn't a window with the ones for the 23XX cards being wrong.
When being verbose, print out some more FC NVRAM values (like framesize).
MFC after: 1 week
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
SIM (as is true for the 1280 and the 12160), then I have to have separate
flags && status for *both* busses. *Whap*.
Implement condition variables for coordination with some target mode
events. It's nice to use these and not panic in obscure little places
in the kernel like 'propagate_priority' just because we went to sleep
holding a mutex, or some other absurd thing.
Remove some bogus ISP_UNLOCK calls. *Whap*.
No longer require that somebody do a lun enable on the wildcard device
to enable target mode. They are, in fact, orthogonal. A wildcard open
is a statement that somebody upstream is willing to accept commands which
are otherwise unrouteable. Now, for QLogic regular SCSI target mode, this
won't matter for a damn because we'll never see ATIOs for luns we haven't
enabled (are listening for, if you will). But for SCCLUN fibre channel
SCSI, we get all kinds of ATIOs. We can either reflect them back here
with minimal info (which is isp_target.c:isp_endcmd() is for), or the
wildcard device (nominally targbh) can handle them.
Do further checking against firmware attributes to see whether we can,
in fact, support target mode in Fibre Channel. For now, require SCCLUN
f/w to supoprt FC target mode.
This is an awful lot of change, but target mode *still* isn't quite right.
MFC after: 4 weeks
applies to. Do more bus # foo things.
Acknowledge Immediate Notifies right away prior to throwing events upstream
(where they're currently being ignored, *groan*)
Capture ASYNC_LIP_F8 as with ASYNC_LIP_OCCURRED. Don't percolate them
upstream as if they were BUS RESETS- they're not.
and cv_wait for mailbox commands to complete if we start them from
here.
Fix residuals for target mode such that we only check the residual and
set it in the CTIO if this is the last CTIO (when we're sending status).
MFC after: 4 weeks
SIM (as is true for the 1280 and the 12160), then I have to have separate
flags && status for *both* busses. *Whap*.
Implement condition variables for coordination with some target mode
events. It's nice to use these and not panic in obscure little places
in the kernel like 'propagate_priority' just because we went to sleep
holding a mutex, or some other absurd thing.
MFC after: 4 weeks
luns) firmware for the Fibre Channel cards.
We used to assume that if we didn't download firmware, we couldn't know
what the firmware capability with respect to SCCLUNs is- and it's important
because the lun field changes in the request queue entry based upon which
firmware it is.
At any rate, we *do* get back firmware attributes in mailbox register 6
when we do ABOUT FIRMWARE for all 2200/2300 cards- and for 2100 cards
with at least 1.17.0 firmware. So- we now assume non-SCCLUN behaviour
for 2100 cards with firmware < 1.17.0- and we check the firmware attributes
for other cards (loaded firmware or not).
This also allows us to get rid of the crappy test of isp_maxluns > 16-
we simply can check firmware attributes for SCCLUN behaviour.
This required an 'oops' fix to the outgoing mailbox count field for
ABOUT FIRMWARE for FC cards.
Also- while here, hardwire firmware revisions for loaded code for SBus
cards. Apparently the 1.35 or 1.37 f/w we've been loading into isp1000
just doesn't report firmware revisions out to mailbox regs 1, 2 and 3
like everyone else. Grumble. Not that this fix hardly matters for FreeBSD.
MFC after: 4 weeks
some reworking (and consequent cleanup) of the interrupt service code.
Also begin to start a cleanup of target mode support that will (eventually)
not require more inforamtion routed with the ATIO to come back with the
CTIO other than tag.
MFC after: 4 weeks
that do not have valid NVRAM. In particular, we were leaving
a retry count set (to retry selection timeouts) when thats
not really what we want. Do some constant string additions
so that LOGDEBUG0 info is useful across all cards.
MFC after: 2 weeks