to sort out disk-io from file-io in the vm/buffer/filesystem space.
The intent is to sort VOP_STRATEGY calls into those which operate
on "real" vnodes and those which operate on VCHR vnodes. For
the latter kind, the call will be changed to VOP_SPECSTRATEGY,
possibly conditionally for those places where dual-use happens.
Add a default VOP_SPECSTRATEGY method which will call the normal
VOP_STRATEGY. First time it is called it will print debugging
information. This will only happen if a normal vnode is passed
to VOP_SPECSTRATEGY by mistake.
Add a real VOP_SPECSTRATEGY in specfs, which does what VOP_STRATEGY
does on a VCHR vnode today.
Add a new VOP_STRATEGY method in specfs to catch instances where
the conversion to VOP_SPECSTRATEGY has not yet happened. Handle
the request just like we always did, but first time called print
debugging information.
Apart up to two instances of console messages per boot, this amounts
to a glorified no-op commit.
If you get any of the messages on your console I would very much
like a copy of them mailed to phk@freebsd.org
kern/vfs_defaults.c it is wrong for the individual filesystems to use
the std* functions as that prevents override of the default.
Found by: src/tools/tools/vop_table
checking for "path == NULL" (like ffs) rather than MNT_ROOT. Otherwise
when you try and do an update or mountd does an NFS export, the remount
fails because the code tries to mount a fresh rootfs and gets an EBUSY.
The same bug is in 4.x (which is where I found it).
Sanity check by: mux
that use it. Specifically, vop_stdlock uses the lock pointed to by
vp->v_vnlock. By default, getnewvnode sets up vp->v_vnlock to
reference vp->v_lock. Filesystems that wish to use the default
do not need to allocate a lock at the front of their node structure
(as some still did) or do a lockinit. They can simply start using
vn_lock/VOP_UNLOCK. Filesystems that wish to manage their own locks,
but still use the vop_stdlock functions (such as nullfs) can simply
replace vp->v_vnlock with a pointer to the lock that they wish to
have used for the vnode. Such filesystems are responsible for
setting the vp->v_vnlock back to the default in their vop_reclaim
routine (e.g., vp->v_vnlock = &vp->v_lock).
In theory, this set of changes cleans up the existing filesystem
lock interface and should have no function change to the existing
locking scheme.
Sponsored by: DARPA & NAI Labs.
v_tag is now const char * and should only be used for debugging.
Additionally:
1. All users of VT_NTS now check vfsconf->vf_type VFCF_NETWORK
2. The user of VT_PROCFS now checks for the new flag VV_PROCDEP, which
is propagated by pseudofs to all child vnodes if the fs sets PFS_PROCDEP.
Suggested by: phk
Reviewed by: bde, rwatson (earlier version)
these in the main filesystems. This does not change the resulting code
but makes the source a little bit more grepable.
Sponsored by: DARPA and NAI Labs.
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
byte offset of the directory entry for the inode number for all types
of files except directories, although this breaks hard links for
non-directories even if it doesn't cause overflow. Just ignore this
broken inode number for stat() and readdir() and return a less broken
one (the block offset of the file), so that applications normally can't
see the brokenness.
This leaves at least the following brokenness:
- extra inodes, vnodes and caching for hard links.
- various overflow bugs. cd9660 supports 64-bit block numbers, but we
silently ignore the top 32 bits in isonum_733() and then drop another
10 bits for our broken inode numbers. We may also have sign extension
bugs from storing 32-bit extents in ints and longs even if ints are
32-bits. These bugs affect DVDs. mkisofs apparently limits them
by writing directory entries first.
Inode numbers were broken mainly in 4.4BSD-Lite2. FreeBSD-1.1.5 seems
to have a correct implementation modulo the overflow bugs. We need
to look up directory entries from inodes for symlinks only. FreeBSD-1.1.5
use separate fields (iso_parent_extent, iso_parent) to point to the
directory entry. 4.4BSD-Lite doesn't have these, and abuses i_ino to
point to the directory entry. Correct pointers are impossible for
hard links, but symlinks can't be hard links.
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@
provided the latter is nonzero. At this point, the former is a fairly
arbitrary default value (DFTPHYS), so changing it to any reasonable
value specified by the device driver is safe. Using the maximum of
these limits broke ffs clustered i/o for devices whose si_iosize_max
is < DFLTPHYS. Using the minimum would break device drivers' ability
to increase the active limit from DFTLPHYS up to MAXPHYS.
Copied the code for this and the associated (unnecessary?) fixup of
mp_iosize_max to all other filesystems that use clustering (ext2fs and
msdosfs). It was completely missing.
PR: 36309
MFC-after: 1 week
locking flags when acquiring a vnode. The immediate purpose is
to allow polling lock requests (LK_NOWAIT) needed by soft updates
to avoid deadlock when enlisting other processes to help with
the background cleanup. For the future it will allow the use of
shared locks for read access to vnodes. This change touches a
lot of files as it affects most filesystems within the system.
It has been well tested on FFS, loopback, and CD-ROM filesystems.
only lightly on the others, so if you find a problem there, please
let me (mckusick@mckusick.com) know.
The problem was that the ISO9660 code wasn't opening the device prior to
issuing ioctl calls. In particular, the device must be open before
iso_get_ssector() is called in iso_mountroot().
If the device isn't opened first, the disk layer blows up due to an
uninitialized variable.
The solution was to open the device, call iso_get_ssector() and then close
it again.
The ATAPI CDROM driver doesn't have this problem because it doesn't use the
disk layer, and evidently doesn't mind if someone issues an ioctl without
first issuing an open call.
Thanks to phk for pointing me at the source of this problem.
Tested by: dirk
MFC after: 1 week
that a buffer's b_blkno would be valid. This is true when vmiodirenable
is turned off because the B_MALLOC'd buffer's data is invalidated when
the buffer is destroyed. But when vmiodirenable is turned on a buffer
can be reconstituted from its VMIO backing store. The reconstituted buffer
will have no knowledge of the physical block translation and the result is
serious directory corruption of the CDROM.
The solution is to fix cd9660_blkatoff() to always BMAP the buffer if
b_lblkno == b_blkno.
MFC after: 0 days
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
systems were repo-copied from sys/miscfs to sys/fs.
- Renamed the following file systems and their modules:
fdesc -> fdescfs, portal -> portalfs, union -> unionfs.
- Renamed corresponding kernel options:
FDESC -> FDESCFS, PORTAL -> PORTALFS, UNION -> UNIONFS.
- Install header files for the above file systems.
- Removed bogus -I${.CURDIR}/../../sys CFLAGS from userland
Makefiles.
the number of references on the filesystem root vnode to be both
expected and released. Many filesystems hold an extra reference on
the filesystem root vnode, which must be accounted for when
determining if the filesystem is busy and then released if it isn't
busy. The old `skipvp' approach required individual filesystem
xxx_unmount functions to re-implement much of vflush()'s logic to
deal with the root vnode.
All 9 filesystems that hold an extra reference on the root vnode
got the logic wrong in the case of forced unmounts, so `umount -f'
would always fail if there were any extra root vnode references.
Fix this issue centrally in vflush(), now that we can.
This commit also fixes a vnode reference leak in devfs, which could
result in idle devfs filesystems that refuse to unmount.
Reviewed by: phk, bp
to struct mount.
This makes the "struct netexport *" paramter to the vfs_export
and vfs_checkexport interface unneeded.
Consequently that all non-stacking filesystems can use
vfs_stdcheckexp().
At the same time, make it a pointer to a struct netexport
in struct mount, so that we can remove the bogus AF_MAX
and #include <net/radix.h> from <sys/mount.h>
An initial tidyup of the mount() syscall and VFS mount code.
This code replaces the earlier work done by jlemon in an attempt to
make linux_mount() work.
* the guts of the mount work has been moved into vfs_mount().
* move `type', `path' and `flags' from being userland variables into being
kernel variables in vfs_mount(). `data' remains a pointer into
userspace.
* Attempt to verify the `type' and `path' strings passed to vfs_mount()
aren't too long.
* rework mount() and linux_mount() to take the userland parameters
(besides data, as mentioned) and pass kernel variables to vfs_mount().
(linux_mount() already did this, I've just tidied it up a little more.)
* remove the copyin*() stuff for `path'. `data' still requires copyin*()
since its a pointer into userland.
* set `mount->mnt_statf_mntonname' in vfs_mount() rather than in each
filesystem. This variable is generally initialised with `path', and
each filesystem can override it if they want to.
* NOTE: f_mntonname is intiailised with "/" in the case of a root mount.
run-time. This is temporary solution until proper kernel Unicode interfaces
are in place and as such was purposely designed to be as tiny as possible
(3 lines of the code not counting comments). The port with conversion routines
for the most popular single-byte languages will be added later today
Reviewed by: bp, "Michael C . Wu" <keichii@iteration.net>
Approved by: bp
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)