by 1 u_int if the number of clusters was 1 more than a multiple of
(8 * sizeof(u_int)). The bitmap is malloced and large (often huge), so
fatal overrun probably only occurred if the number of clusters was 1
more than 1 multiple of PAGE_SIZE/8.
This is what we came here for: Hang dev_t's from their cdevsw,
refcount cdevsw and dev_t and generally keep track of things a lot
better than we used to:
Hold a cdevsw reference around all entrances into the device driver,
this will be necessary to safely determine when we can unload driver
code.
Hold a dev_t reference while the device is open.
KASSERT that we do not enter the driver on a non-referenced dev_t.
Remove old D_NAG code, anonymous dev_t's are not a problem now.
When destroy_dev() is called on a referenced dev_t, move it to
dead_cdevsw's list. When the refcount drops, free it.
Check that cdevsw->d_version is correct. If not, set all methods
to the dead_*() methods to prevent entrance into driver. Print
warning on console to this effect. The device driver may still
explode if it is also incompatible with newbus, but in that case
we probably didn't get this far in the first place.
Remove the unused second argument from udev2dev().
Convert all remaining users of makedev() to use udev2dev(). The
semantic difference is that udev2dev() will only locate a pre-existing
dev_t, it will not line makedev() create a new one.
Apart from the tiny well controlled windown in D_PSEUDO drivers,
there should no longer be any "anonymous" dev_t's in the system
now, only dev_t's created with make_dev() and make_dev_alias()
Introduce d_version field in struct cdevsw, this must always be
initialized to D_VERSION.
Flip sense of D_NOGIANT flag to D_NEEDGIANT, this involves removing
four D_NOGIANT flags and adding 145 D_NEEDGIANT flags.
to size_t *, which is incorrect because they may have different widths.
This caused some subtle forms of corruption, the mostly frequently
reported one being that the last character of a filename was sometimes
duplicated on amd64.
it means that the correct value is unknown. Since this value is just
a hint to improve performance, initially assume that the first non-reserved
cluster is free, then correct this assumption if necessary before writing
the FSInfo block back to disk.
PR: 62826
MFC after: 2 weeks
- don't unlock the vnode after vinvalbuf() only to have to relock it
almost immediately.
- don't refer to devices classified by vn_isdisk() as block devices.
created with the same name, and vice versa:
- Immediately recycle vnodes of files & directories that have been deleted
or renamed.
- When looking an entry in the VFS name cache or smbfs's private
cache, make sure the vnode type is consistent with the type of file
the server thinks it is, and re-create the vnode if it isn't.
The alternative to this is to recycle vnodes unconditionally when their
use count drops to 0, but this would make all the caching we do
mostly useless.
PR: 62342
MFC after: 2 weeks
- struct plimit includes a mutex to protect a reference count. The plimit
structure is treated similarly to struct ucred in that is is always copy
on write, so having a reference to a structure is sufficient to read from
it without needing a further lock.
- The proc lock protects the p_limit pointer and must be held while reading
limits from a process to keep the limit structure from changing out from
under you while reading from it.
- Various global limits that are ints are not protected by a lock since
int writes are atomic on all the archs we support and thus a lock
wouldn't buy us anything.
- All accesses to individual resource limits from a process are abstracted
behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return
either an rlimit, or the current or max individual limit of the specified
resource from a process.
- dosetrlimit() was renamed to kern_setrlimit() to match existing style of
other similar syscall helper functions.
- The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit()
(it didn't used the stackgap when it should have) but uses lim_rlimit()
and kern_setrlimit() instead.
- The svr4 compat no longer uses the stackgap for resource limits calls,
but uses lim_rlimit() and kern_setrlimit() instead.
- The ibcs2 compat no longer uses the stackgap for resource limits. It
also no longer uses the stackgap for accessing sysctl's for the
ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result,
ibcs2_sysconf() no longer needs Giant.
- The p_rlimit macro no longer exists.
Submitted by: mtm (mostly, I only did a few cleanups and catchups)
Tested on: i386
Compiled on: alpha, amd64
file has been removed, it should be purged from the cache, but it need
not be removed from the directory stack causing corruption; instead,
it will simply be removed once the last references and holds on it
are dropped at the end of the unlink/rmdir system calls, and the
normal !UN_CACHED VOP_INACTIVE() handler for unionfs finishes it off.
This is easily reproduced by repeated "echo >file; rm file" on a
unionfs mount. Strangely, "echo -n >file; rm file" didn't make
it happen.
(msdosfs uses normal 8-char indentation almost everywhere else),
too-long lines, and minor English usage errors. The verbose formal
comment before the new function is still abnormal.
(mainly unsorting). There were no changes related to the dirty flag
here. The reference NetBSD implementation put msdosfs_advlock() in a
different place. This commit only moves its declarations and changes
some of the function body to be like the NetBSD version.
disposing fifo resources in fifo_cleanup() instead using of
"vp->v_usecount == 1". There may be other references to the vnode, for
instance by nullfs, at the time fifo_open() or fifo_close() is called,
which could cause a resource leak.
Don't bother grabbing the vnode interlock in fifo_cleanup() since it no
longer accesses v_usecount.
vnode of the parent. However, this check should not be performed if
the lookup failed. This change should fix "union_lookup returning
. not same as startdir" panics people were seeing. The bug was
introduced by an incomplete import of a NetBSD delta in rev 1.38.
- Move the aforementioned check out from DIAGNOSTIC. Performance
is the least of our unionfs worries.
- Minor reorganization.
PR: 53004
MFC after: 1 week
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
a resource leak. Move the resource deallocation code from fifo_close()
to a new function, fifo_cleanup(), and call fifo_cleanup() from
fifo_close() and the appropriate places in fifo_open().
Tested by: Lukas Ertl
Pointy hat to: truckman
thread being waken up. The thread waken up can run at a priority as
high as after tsleep().
- Replace selwakeup()s with selwakeuppri()s and pass appropriate
priorities.
- Add cv_broadcastpri() which raises the priority of the broadcast
threads. Used by selwakeuppri() if collision occurs.
Not objected in: -arch, -current