Bring in updated jail support from bz_jail branch.
This enhances the current jail implementation to permit multiple
addresses per jail. In addtion to IPv4, IPv6 is supported as well.
Due to updated checks it is even possible to have jails without
an IP address at all, which basically gives one a chroot with
restricted process view, no networking,..
SCTP support was updated and supports IPv6 in jails as well.
Cpuset support permits jails to be bound to specific processor
sets after creation.
Jails can have an unrestricted (no duplicate protection, etc.) name
in addition to the hostname. The jail name cannot be changed from
within a jail and is considered to be used for management purposes
or as audit-token in the future.
DDB 'show jails' command was added to aid debugging.
Proper compat support permits 32bit jail binaries to be used on 64bit
systems to manage jails. Also backward compatibility was preserved where
possible: for jail v1 syscalls, as well as with user space management
utilities.
Both jail as well as prison version were updated for the new features.
A gap was intentionally left as the intermediate versions had been
used by various patches floating around the last years.
Bump __FreeBSD_version for the afore mentioned and in kernel changes.
Special thanks to:
- Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches
and Olivier Houchard (cognet) for initial single-IPv6 patches.
- Jeff Roberson (jeff) and Randall Stewart (rrs) for their
help, ideas and review on cpuset and SCTP support.
- Robert Watson (rwatson) for lots and lots of help, discussions,
suggestions and review of most of the patch at various stages.
- John Baldwin (jhb) for his help.
- Simon L. Nielsen (simon) as early adopter testing changes
on cluster machines as well as all the testers and people
who provided feedback the last months on freebsd-jail and
other channels.
- My employer, CK Software GmbH, for the support so I could work on this.
Reviewed by: (see above)
MFC after: 3 months (this is just so that I get the mail)
X-MFC Before: 7.2-RELEASE if possible
'kern.cp_time'. For a live kernel it uses the sysctl. For a crashdump,
it first checks to see if the kernel has a 'cp_time' global symbol. If
it does, it uses that. If that doesn't work, when it uses the recently
added kvm_getmaxcpu(3) and kvm_getpcpu(3) routines to walk all the CPUs
and sum up their counters.
MFC after: 1 week
similar to _WANT_UCRED and _WANT_PRISON and seems to be much nicer than
defining _KERNEL.
It is also needed for my sys/refcount.h change going in soon.
global list of all files.
- Mark kvm_getfiles() as broken since the live version exports struct xfile
with no filelist at the head and does so incorrectly and the deadfiles
version exports struct file with a filelist at the head. It is not known
if either version works or complies to the manpage.
kthread_add() takes the same parameters as the old kthread_create()
plus a pointer to a process structure, and adds a kernel thread
to that process.
kproc_kthread_add() takes the parameters for kthread_add,
plus a process name and a pointer to a pointer to a process instead of just
a pointer, and if the proc * is NULL, it creates the process to the
specifications required, before adding the thread to it.
All other old kthread_xxx() calls return, but act on (struct thread *)
instead of (struct proc *). One reason to change the name is so that
any old kernel modules that are lying around and expect kthread_create()
to make a process will not just accidentally link.
fix top to show kernel threads by their thread name in -SH mode
add a tdnam formatting option to ps to show thread names.
make all idle threads actual kthreads and put them into their own idled process.
make all interrupt threads kthreads and put them in an interd process
(mainly for aesthetic and accounting reasons)
rename proc 0 to be 'kernel' and it's swapper thread is now 'swapper'
man page fixes to follow.
- p_sflag was mostly protected by PROC_LOCK rather than the PROC_SLOCK or
previously the sched_lock. These bugs have existed for some time.
- Allow swapout to try each thread in a process individually and then
swapin the whole process if any of these fail. This allows us to move
most scheduler related swap flags into td_flags.
- Keep ki_sflag for backwards compat but change all in source tools to
use the new and more correct location of P_INMEM.
Reported by: pho
Reviewed by: attilio, kib
Approved by: re (kensmith)
scheme allowed for 1024 PTE pages, each containing 256 PTEs.
This yielded 2GB of KVA. This is not enough to boot a kernel
on a 16GB box and in general too low for a 64-bit machine.
By adding a level of indirection we now have 1024 2nd-level
directory pages, each capable of supporting 2GB of KVA. This
brings the grand total to 2TB of KVA.
- Restore support for fetching swap information from crash dumps via
kvm_get_swapinfo(3) to fix pstat -T/-s on crash dumps.
Reviewed by: arch@, phk
MFC after: 1 week
bogusly used the kvm_powerpc.c file as a template for the license, but
then either wrote the code himself, or cribbed it from the kvm_i386
file. The only thing from the kvm_powerpc.c file was the license.
Correct this mistake with his blessing.
far more convenient for libkvm to work with because of the page table
block at the beginning. As a result, the MD code is smaller.
libkvm will automatically detect old vs mini dumps on i386 and amd64.
libkvm will handle i386 PAE and non-PAE modes. There is a PAE flag in
the i386 minidump header to signal the width of the entries in the
page table block.
Other convenient values are also present, such as kernbase and the direct
map addresses on amd64.
readable on certain random memory configurations. If the libkvm consumer
tried to read something that was in the very last pdpe, pde or pte slot,
it would bogusly fail.
This is broken in RELENG_6 too.
returned an lseek offset in a "u_long *" value, which can't express >4GB
offsets on 32 bit machines (eg: PAE). Change to "off_t *" for all.
Support ELF crashdumps on i386 and amd64.
Support PAE crashdumps on i386. This is done by auto-detecting the
presence of the IdlePDPT which means that PAE is active.
I used Marcel's _kvm_pa2off strategy and ELF header reader for ELF support
on amd64. Paul Saab ported the amd64 changes to i386 and we implemented
the PAE support from there.
Note that gdb6 in the src tree uses whatever libkvm supports. If you want
to debug an old crash dump, you might want to keep an old libkvm.so handy
and use LD_PRELOAD or the like. This does not detect the old raw dump
format.
Approved by: re
Extract the struct cdev pointer and the tty device from inside rather than
incorrectly casting the 'struct cdev *' pointer to a 'dev_t' int. Not
that this was particularly important since it was only used for reading
vmcore files.
- Add a comment noting that the ru_[us]times values being read aren't
actually valid and need to be computed from the raw values.
Submitted by: many (1)
but with slightly cleaned up interfaces.
The KSE structure has become the same as the "per thread scheduler
private data" structure. In order to not make the diffs too great
one is #defined as the other at this time.
The KSE (or td_sched) structure is now allocated per thread and has no
allocation code of its own.
Concurrency for a KSEGRP is now kept track of via a simple pair of counters
rather than using KSE structures as tokens.
Since the KSE structure is different in each scheduler, kern_switch.c
is now included at the end of each scheduler. Nothing outside the
scheduler knows the contents of the KSE (aka td_sched) structure.
The fields in the ksegrp structure that are to do with the scheduler's
queueing mechanisms are now moved to the kg_sched structure.
(per ksegrp scheduler private data structure). In other words how the
scheduler queues and keeps track of threads is no-one's business except
the scheduler's. This should allow people to write experimental
schedulers with completely different internal structuring.
A scheduler call sched_set_concurrency(kg, N) has been added that
notifies teh scheduler that no more than N threads from that ksegrp
should be allowed to be on concurrently scheduled. This is also
used to enforce 'fainess' at this time so that a ksegrp with
10000 threads can not swamp a the run queue and force out a process
with 1 thread, since the current code will not set the concurrency above
NCPU, and both schedulers will not allow more than that many
onto the system run queue at a time. Each scheduler should eventualy develop
their own methods to do this now that they are effectively separated.
Rejig libthr's kernel interface to follow the same code paths as
linkse for scope system threads. This has slightly hurt libthr's performance
but I will work to recover as much of it as I can.
Thread exit code has been cleaned up greatly.
exit and exec code now transitions a process back to
'standard non-threaded mode' before taking the next step.
Reviewed by: scottl, peter
MFC after: 1 week