device still wind up in xpt_done after the path has been
invalidated. Since we don't always need sim or devq, add some guard
rails to only fail if we have to use them.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D14040
Make it possible to retrieve mmc parameters via the XPT_GET_ADVINFO
call instead. Convert camcontrol to the new scheme.
Reviewed by: imp. kibab
Sponsored by: Netflix
Differential Revision: D13868
This provides a nice wrarpper around the XPT_PATH_INQ ccb creation and
calling.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D13387
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
In xpt_bus_register(), remove superfluous call to free(). This was mostly
benign since free(9) checks for NULL before doing anything, and
xpt_create_path() is nice enough to NULL out the pointer on failure.
However, it could've segfaulted if malloc(9) failed during
xpt_create_path().
Submitted by: gibbs
MFC after: 3 weeks
Sponsored by: Spectra Logic Corp
This patch changes the way XPT_GDEV_TYPE works for NVMe. The current
ccb_getdev structure includes pointers to the NVMe Identify Controller
and Namespace structures, but these are kernel virtual addresses which
are not accessible from user space.
As an alternative, the patch changes the pointers into padding in
ccb_getdev and adds two new types to ccb_dev_advinfo to retrieve the
Identify Controller (CDAI_TYPE_NVME_CNTRL) and Namespace
(CDAI_TYPE_NVME_NS) data structures.
Reviewed By: rpokala, imp
Differential Revision: https://reviews.freebsd.org/D10466
Submitted by: Chuck Tuffli
o Allow I/O scheduler to gather times on 32-bit systems. We do this by shifting
the sbintime_t over by 8 bits and truncating to 32-bits. This gives us 8.24
time. This is sufficient both in range (256 seconds is about 128x what current
users need) and precision (60ns easily meets the 1ms smallest bucket size
measurements). 64-bit systems are unchanged. Centralize all the time math so
it's easy to tweak tha range / precision tradeoffs in the future.
o While I'm here, the I/O scheduler should be using periph_data rather than
sim_data since it is operating on behalf of the periph.
Differential Review: https://reviews.freebsd.org/D12119
the IO type (Admin or NVM) using XPT op-codes XPT_NVME_ADMIN or
XPT_NVME_IO.
Submitted by: Chuck Tuffli <chuck@tuffli.net>
Differential Revision: https://reviews.freebsd.org/D10247
Implement the MMC/SD/SDIO protocol within a CAM framework. CAM's
flexible queueing will make it easier to write non-storage drivers
than the legacy stack. SDIO drivers from both the kernel and as
userland daemons are possible, though much of that functionality will
come later.
Some of the CAM integration isn't complete (there are sleeps in the
device probe state machine, for example), but those minor issues can
be improved in-tree more easily than out of tree and shouldn't gate
progress on other fronts. Appologies to reviews if specific items
have been overlooked.
Submitted by: Ilya Bakulin
Reviewed by: emaste, imp, mav, adrian, ian
Differential Review: https://reviews.freebsd.org/D4761
merge with first commit, various compile hacks.
using a driver-supplied sbuf for printing device discovery
announcements. This helps ensure that messages to the console
will be properly serialized (through sbuf_putbuf) and not be
truncated and interleaved with other messages. The
infrastructure mirrors the existing xpt_announce_periph()
entry point and is opt-in for now. No content or formatting
changes are visible to the operator other than the new coherency.
While here, eliminate the stack usage of the temporary
announcement buffer in some of the drivers. It's moved to the
softc for now, but future work will eliminate it entirely by
making the code flow more linear. Future work will also address
locking so that the sbufs can be dynamically sized.
The scsi_da, scs_cd, scsi_ses, and ata_da drivers are converted
at this point, other drivers can be converted at a later date.
A tunable+sysctl, kern.cam.announce_nosbuf, exists for testing
purposes but will be removed later.
TODO:
Eliminate all of the code duplication and temporary buffers. The
old printf-based methods will be retired, and xpt_announce_periph()
will just be a wrapper that uses a dynamically sized sbuf. This
requires that the register and deregister paths be made malloc-safe,
which they aren't currently.
Sponsored by: Netflix
For three years now CAM does not use SIM lock, but still enforces SIM to
use it. Remove this requirement, allowing SIMs to have any locking they
prefer, if they pass no mutex to cam_sim_alloc().
MFC after: 2 weeks
Queue statistics has nothing to do with presence or absence of INQUIRY
data, etc. Target mode devices are never configured, but have queues.
MFC after: 2 weeks
CAM_UNLOCKED is internal flag and cannot correctly be set by userland.
Return EINVAL from CAMIOCOMMAND and CAMIOQUEUE if it is set.
Also fix leaks in some of the error paths for CAMIOQUEUE.
PR: 215356
Reviewed by: ken, mav
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D9869
all of them in terms of an sbuf-based back-end, xpt_path_sbuf. This
unifies the implementation, but more importantly it stops the output
fropm being split between 4 or more invocations of printf. The
multiple invocations cause interleaving of the messages on the
console during boot, making the output of disk discovery often
unintelligible. This change helps a lot, but more work is needed.
Reviewed by: ken, mav
Sponsored by: Netflix
Replace archaic "busses" with modern form "buses."
Intentionally excluded:
* Old/random drivers I didn't recognize
* Old hardware in general
* Use of "busses" in code as identifiers
No functional change.
http://grammarist.com/spelling/buses-busses/
PR: 216099
Reported by: bltsrc at mail.ru
Sponsored by: Dell EMC Isilon
The sim_vid, hba_vid, and dev_name fields of struct ccb_pathinq are
fixed-length strings. AFAICT the only place they're read is in
sbin/camcontrol/camcontrol.c, which assumes they'll be null-terminated.
However, the kernel doesn't null-terminate them. A bunch of copy-pasted code
uses strncpy to write them, and doesn't guarantee null-termination. For at
least 4 drivers (mpr, mps, ciss, and hyperv), the hba_vid field actually
overflows. You can see the result by doing "camcontrol negotiate da0 -v".
This change null-terminates those fields everywhere they're set in the
kernel. It also shortens a few strings to ensure they'll fit within the
16-character field.
PR: 215474
Reported by: Coverity
CID: 1009997 1010000 1010001 1010002 1010003 1010004 1010005
CID: 1331519 1010006 1215097 1010007 1288967 1010008 1306000
CID: 1211924 1010009 1010010 1010011 1010012 1010013 1010014
CID: 1147190 1010017 1010016 1010018 1216435 1010020 1010021
CID: 1010022 1009666 1018185 1010023 1010025 1010026 1010027
CID: 1010028 1010029 1010030 1010031 1010033 1018186 1018187
CID: 1010035 1010036 1010042 1010041 1010040 1010039
Reviewed by: imp, sephe, slm
MFC after: 4 weeks
Sponsored by: Spectra Logic Corp
Differential Revision: https://reviews.freebsd.org/D9037
Differential Revision: https://reviews.freebsd.org/D9038
The BUF_TRACKING bio pointer only makes sense for kernel consumers of
CCBs.
PR: 214250
Reported by: trasz@
Reviewed by: imp@, markj@
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8477
Upstream the BUF_TRACKING and FULL_BUF_TRACKING buffer debugging code.
This can be handy in tracking down what code touched hung bios and bufs
last. The full history is especially useful, but adds enough bloat that
it shouldn't be enabled in release builds.
Function names (or arbitrary string constants) are tracked in a
fixed-size ring in bufs. Bios gain a pointer to the upper buf for
tracking. SCSI CCBs gain a pointer to the upper bio for tracking.
Reviewed by: markj
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8366
per-protocol. This reduces the number scsi symbols references by
cam_xpt significantly, and eliminates all ata / nvme symbols. There's
still some NVME / ATA specific code for dealing with XPT_NVME_IO and
XPT_ATA_IO respectively, and a bunch of scsi-specific code, but this
is progress.
Differential Revision: https://reviews.freebsd.org/D7289
eliminates the need to special case everything in cam_xpt for new
transports. It is now a failure to not have a transport object when
registering the bus as well. You can still, however, create a
transport that's unspecified (XPT_)
Differential Revision: https://reviews.freebsd.org/D7289
This makes it possible to manually force updating capacity data
after the disk got resized. Without it it might be neccessary to
reboot before FreeBSD notices updated disk size under eg VMWare.
Discussed with: imp@
MFC after: 1 month
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D6108
as before. The common scheduling bits have moved from inline code in
each of the CAM periph drivers into a library that implements the
default scheduling.
In addition, a number of rate-limiting and I/O preference options can
be enabled by adding CAM_IOSCHED_NETFLIX to your config file. A number
of extra stats are also maintained. CAM_IOSCHED_NETFLIX isn't on by
default because it uses a separate BIO_READ and BIO_WRITE queue, so
doesn't honor BIO_ORDERED between these two types of operations. We
already didn't honor it for BIO_DELETE, and we don't depend on
BIO_ORDERED between reads and writes anywhere in the system (it is
currently used with BIO_FLUSH in ZFS to make sure some writes are
complete before others start and as a poor-man's soft dependency in
one place in UFS where we won't be issuing READs until after the
operation completes). However, out of an abundance of caution, it
isn't enabled by default.
Plus, this also brings in NCQ TRIM support for those SSDs that support
it. A black list is also provided for known rogues that use NCQ trim
as an excuse to corrupt the drive. It was difficult to separate out
into a separate commit.
This code has run in production at Netflix for over a year now.
Sponsored by: Netflix, Inc
Differential Revision: https://reviews.freebsd.org/D4609
camdd(8) utility.
CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and
completed CCBs may be retrieved via the CAMIOGET ioctl. User
processes can use poll(2) or kevent(2) to get notification when
I/O has completed.
While the existing CAMIOCOMMAND blocking ioctl interface only
supports user virtual data pointers in a CCB (generally only
one per CCB), the new CAMIOQUEUE ioctl supports user virtual and
physical address pointers, as well as user virtual and physical
scatter/gather lists. This allows user applications to have more
flexibility in their data handling operations.
Kernel memory for data transferred via the queued interface is
allocated from the zone allocator in MAXPHYS sized chunks, and user
data is copied in and out. This is likely faster than the
vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in
configurations with many processors (there are more TLB shootdowns
caused by the mapping/unmapping operation) but may not be as fast
as running with unmapped I/O.
The new memory handling model for user requests also allows
applications to send CCBs with request sizes that are larger than
MAXPHYS. The pass(4) driver now limits queued requests to the I/O
size listed by the SIM driver in the maxio field in the Path
Inquiry (XPT_PATH_INQ) CCB.
There are some things things would be good to add:
1. Come up with a way to do unmapped I/O on multiple buffers.
Currently the unmapped I/O interface operates on a struct bio,
which includes only one address and length. It would be nice
to be able to send an unmapped scatter/gather list down to
busdma. This would allow eliminating the copy we currently do
for data.
2. Add an ioctl to list currently outstanding CCBs in the various
queues.
3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do
that.
4. Test physical address support. Virtual pointers and scatter
gather lists have been tested, but I have not yet tested
physical addresses or scatter/gather lists.
5. Investigate multiple queue support. At the moment there is one
queue of commands per pass(4) device. If multiple processes
open the device, they will submit I/O into the same queue and
get events for the same completions. This is probably the right
model for most applications, but it is something that could be
changed later on.
Also, add a new utility, camdd(8) that uses the asynchronous pass(4)
driver interface.
This utility is intended to be a basic data transfer/copy utility,
a simple benchmark utility, and an example of how to use the
asynchronous pass(4) interface.
It can copy data to and from pass(4) devices using any target queue
depth, starting offset and blocksize for the input and ouptut devices.
It currently only supports SCSI devices, but could be easily extended
to support ATA devices.
It can also copy data to and from regular files, block devices, tape
devices, pipes, stdin, and stdout. It does not support queueing
multiple commands to any of those targets, since it uses the standard
read(2)/write(2)/writev(2)/readv(2) system calls.
The I/O is done by two threads, one for the reader and one for the
writer. The reader thread sends completed read requests to the
writer thread in strictly sequential order, even if they complete
out of order. That could be modified later on for random I/O patterns
or slightly out of order I/O.
camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from
the pass(4) driver and also to send request notifications internally.
For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR)
per CAM CCB on the reading side, and a scatter/gather list
(CAM_DATA_SG) on the writing side. In addition to testing both
interfaces, this makes any potential reblocking of I/O easier. No
data is copied between the reader and the writer, but rather the
reader's buffers are split into multiple I/O requests or combined
into a single I/O request depending on the input and output blocksize.
For the file I/O path, camdd(8) also uses a single buffer (read(2),
write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list
(readv(2), writev(2), preadv(2), pwritev(2)) on writes.
Things that would be nice to do for camdd(8) eventually:
1. Add support for I/O pattern generation. Patterns like all
zeros, all ones, LBA-based patterns, random patterns, etc. Right
Now you can always use /dev/zero, /dev/random, etc.
2. Add support for a "sink" mode, so we do only reads with no
writes. Right now, you can use /dev/null.
3. Add support for automatic queue depth probing, so that we can
figure out the right queue depth on the input and output side
for maximum throughput. At the moment it defaults to 6.
4. Add support for SATA device passthrough I/O.
5. Add support for random LBAs and/or lengths on the input and
output sides.
6. Track average per-I/O latency and busy time. The busy time
and latency could also feed in to the automatic queue depth
determination.
sys/cam/scsi/scsi_pass.h:
Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue
and fetch asynchronous CAM CCBs respectively.
Although these ioctls do not have a declared argument, they
both take a union ccb pointer. If we declare a size here,
the ioctl code in sys/kern/sys_generic.c will malloc and free
a buffer for either the CCB or the CCB pointer (depending on
how it is declared). Since we have to keep a copy of the
CCB (which is fairly large) anyway, having the ioctl malloc
and free a CCB for each call is wasteful.
sys/cam/scsi/scsi_pass.c:
Add asynchronous CCB support.
Add two new ioctls, CAMIOQUEUE and CAMIOGET.
CAMIOQUEUE adds a CCB to the incoming queue. The CCB is
executed immediately (and moved to the active queue) if it
is an immediate CCB, but otherwise it will be executed
in passstart() when a CCB is available from the transport layer.
When CCBs are completed (because they are immediate or
passdone() if they are queued), they are put on the done
queue.
If we get the final close on the device before all pending
I/O is complete, all active I/O is moved to the abandoned
queue and we increment the peripheral reference count so
that the peripheral driver instance doesn't go away before
all pending I/O is done.
The new passcreatezone() function is called on the first
call to the CAMIOQUEUE ioctl on a given device to allocate
the UMA zones for I/O requests and S/G list buffers. This
may be good to move off to a taskqueue at some point.
The new passmemsetup() function allocates memory and
scatter/gather lists to hold the user's data, and copies
in any data that needs to be written. For virtual pointers
(CAM_DATA_VADDR), the kernel buffer is malloced from the
new pass(4) driver malloc bucket. For virtual
scatter/gather lists (CAM_DATA_SG), buffers are allocated
from a new per-pass(9) UMA zone in MAXPHYS-sized chunks.
Physical pointers are passed in unchanged. We have support
for up to 16 scatter/gather segments (for the user and
kernel S/G lists) in the default struct pass_io_req, so
requests with longer S/G lists require an extra kernel malloc.
The new passcopysglist() function copies a user scatter/gather
list to a kernel scatter/gather list. The number of elements
in each list may be different, but (obviously) the amount of data
stored has to be identical.
The new passmemdone() function copies data out for the
CAM_DATA_VADDR and CAM_DATA_SG cases.
The new passiocleanup() function restores data pointers in
user CCBs and frees memory.
Add new functions to support kqueue(2)/kevent(2):
passreadfilt() tells kevent whether or not the done
queue is empty.
passkqfilter() adds a knote to our list.
passreadfiltdetach() removes a knote from our list.
Add a new function, passpoll(), for poll(2)/select(2)
to use.
Add devstat(9) support for the queued CCB path.
sys/cam/ata/ata_da.c:
Add support for the BIO_VLIST bio type.
sys/cam/cam_ccb.h:
Add a new enumeration for the xflags field in the CCB header.
(This doesn't change the CCB header, just adds an enumeration to
use.)
sys/cam/cam_xpt.c:
Add a new function, xpt_setup_ccb_flags(), that allows specifying
CCB flags.
sys/cam/cam_xpt.h:
Add a prototype for xpt_setup_ccb_flags().
sys/cam/scsi/scsi_da.c:
Add support for BIO_VLIST.
sys/dev/md/md.c:
Add BIO_VLIST support to md(4).
sys/geom/geom_disk.c:
Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size
limiting code in g_disk_start() a bit.
sys/kern/subr_bus_dma.c:
Change _bus_dmamap_load_vlist() to take a starting offset and
length.
Add a new function, _bus_dmamap_load_pages(), that will load a list
of physical pages starting at an offset.
Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios.
Allow unmapped I/O to start at an offset.
sys/kern/subr_uio.c:
Add two new functions, physcopyin_vlist() and physcopyout_vlist().
sys/pc98/include/bus.h:
Guard kernel-only parts of the pc98 machine/bus.h header with
#ifdef _KERNEL.
This allows userland programs to include <machine/bus.h> to get the
definition of bus_addr_t and bus_size_t.
sys/sys/bio.h:
Add a new bio flag, BIO_VLIST.
sys/sys/uio.h:
Add prototypes for physcopyin_vlist() and physcopyout_vlist().
share/man/man4/pass.4:
Document the CAMIOQUEUE and CAMIOGET ioctls.
usr.sbin/Makefile:
Add camdd.
usr.sbin/camdd/Makefile:
Add a makefile for camdd(8).
usr.sbin/camdd/camdd.8:
Man page for camdd(8).
usr.sbin/camdd/camdd.c:
The new camdd(8) utility.
Sponsored by: Spectra Logic
MFC after: 1 week
AC_ADVINFO_CHANGED.
Without this change, newly inserted hard disks won't always have their
physical path device nodes created. The problem reproduces most readily
when attaching a large number of disks at once.
Differential Revision: https://reviews.freebsd.org/D2290
Reviewed by: mav, imp
MFC after: 2 weeks
Sponsored by: Spectra Logic
There are four places, all in cam_xpt.c, where ccbs are malloc'ed. Two of
these use M_ZERO, two don't. The two that don't meant that allocated ccbs
had trash in them making it hard to debug errors where they showed up. Due
to this, use M_ZERO all the time when allocating ccbs.
Submitted by: Scott Ferris <scott.ferris@isilon.com>
Sponsored by: EMC/Isilon Storage Division
Reviewed by: scottl, imp
Differential: https://reviews.freebsd.org/D2120
This VPD page is effectively an extension of the standard Inquiry
data page, and includes lots of additional bits.
This commit includes support for probing the page in the SCSI probe code,
and an additional request type for the XPT_DEV_ADVINFO CCB. CTL already
supports the Extended Inquiry page.
Support for querying this page in the sa(4) driver will come later.
sys/cam/scsi/scsi_xpt.c:
Probe the Extended Inquiry page, if the device supports it, and
return it in response to a XPT_DEV_ADVINFO CCB if it is requested.
sys/cam/scsi/cam_ccb.h:
Define a new advanced information CCB data type, CDAI_TYPE_EXT_INQ.
sys/cam/cam_xpt.c:
Free the extended inquiry data in a device when the device goes
away.
sys/cam/cam_xpt_internal.h:
Add an extended inquiry data pointer and length to struct cam_ed.
sys/sys/param.h
Bump __FreeBSD_version for the addition of the new
CDAI_TYPE_EXT_INQ advanced information type.
Sponsored by: Spectra Logic
MFC after: 1 week