For fibre channel, start going for the gusto and using AC_FOUND_DEVICE
and AC_LOST_DEVICE calls to xpt_async when devices appear and disappear
as the loop or fabric changes.
ISPASYNC_FW_CRASH is the async event code where the platform layer
deals with a firmware crash.
some of the RIO (reduced interrupt operation) stuff. Add 64 bit
data list (DSD type 1) and arbitrary data list (DSD type 2)
data structure defines.
Add macros that parameterize usage of the Request/Response in/out
queue pointers. When we finish 2300 support, different registers
will be accessed for the 2300.
part of the PCI block for the 2300- not software convention usage
of the mailbox registers- so we macrosize in/out pointer usage.
Only report that a LIP destroyed commands if it actually destroyed
commands. Get the chan/tgt/lun order correct. Fix a longstanding
stupid bug that caused us to try and issue a command with a tag on
Channel B because we were checking the tagged capability for the
target against Channel A.
A firmware crash is now vectored out to platform specific code
as an async event.
Some minor formatting tweaks.
554: passing arg 4 of `resource_string_value' from incompatible pointer type
576: passing arg 4 of `resource_string_value' from incompatible pointer type
593: passing arg 4 of `resource_string_value' from incompatible pointer type
commands that complete (with no apparent error) after
we receive a LIP. This has been observed mostly on
Local Loop topologies. To be safe, let's just mark
all active commands as dead if we get a LIP and we're
on a private or public loop.
MFC after: 4 weeks
----
Make a device for each ISP- really usable only with devfs and add an ioctl
entry point (this can be used to (re)set debug levels, reset the HBA,
rescan the fabric, issue lips, etc).
----
Add in a kernel thread for Fibre Channel cards. The purpose of this
thread is to be woken up to clean up after Fibre Channel events
block things. Basically, any FC event that casts doubt on the
location or identify of FC devices blocks the queues. When, and
if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED
async event, we activate the kthread which will then, in full thread
context, re-evaluate the local loop and/or the fabric. When it's
satisfied that things are stable, it can then release the blocked
queues and let commands flow again.
The prior mechanism was a lazy evaluation. That is, the next command
to come down the pipe after change events would pay the full price
for re-evaluation. And if this was done off of a softcall, it really
could hang up the system.
These changes brings the FreeBSD port more in line with the Solaris,
Linux and NetBSD ports. It also, more importantly, gets us being
more proactive about topology changes which could then be reflected
upwards to CAM so that the periph driver can be informed sooner
rather than later when things arrive or depart.
---
Add in the (correct) usage of locking macros- we now have lock transition
macros which allow us to transition from holding the CAM lock (Giant)
and grabbing the softc lock and vice versa. Switch over to having this
HBA do real locking. Some folks claim this won't be a win. They're right.
But you have to start somewhere, and this will begin to teach us how
to DTRT for HBAs, etc.
--
Start putting in prototype 2300 support. Add back in LIP
and Loop Reset as async events that each platform will handle.
Add in another int_bogus instrumentation point.
Do some more substantial target mode cleanups.
MFC after: 8 weeks
overflow the request queue. The reason we want to do this is that we
now push out completed CTIOs as we complete them- this gets the QLogic
working on them quicker. So we need to know whether we can put the entire
burrito out before we start.
We now support conjoint status with data for the last CTIO for both Fibre
Channel and SCSI. Leave the old code in place in case we need to go back
(minor 3 line ifdef).
Ultra-ultra important- *don't* set rq->req_seg_count for non-data
target mode requests in isp_pci_dmasetup. D'oh- this is actually
the tag value area for a CTIO. What *was* I thinking? Boy howdy
does both aic7xxx and sym get awfully unhappy when on reconnect
you give them a constant '1' for a tag value.
function- we did it a bit cleaner. We only use this if a CTIO completes with
!CT_OK state. We now have managed to get away without having to poke around
and trying to find the original ATIO- the csio we're using has the tag_id
and lun values with it which is mostly what we need when we do the putback.
Make sure we correctly propagate AT_TQAE->CT_TQAE for tags. Make sure
we call ISP_DMAFREE only if we had DATA to move.
tag is active for an ATIO, and say that you want to reconnect with
a tag value in a CTIO have *never* been exercised until now. This lossage
derived from Solaris code where this stuff originally came from that is
about 7 years old. Amazing.
We now bundle the incoming tag (legal values are 0..256) as the low
16 bits of the ccb_accept_tio's at_tagid while we put the firmware
handle for this ATIO in the top 16 bits- define some macros to make
this cleaner.
Complete some Ansification.
Redo establishment of default SCSI parameters whether or not
we've been compiled for target mode. Unfortunately, the Qlogic
f/w is confused so that if we set all targets to be 'safe' (i.e.,
narrow/async), it will also then report narrow, async if we're
contacted in target mode from that target (acting in initiator
role). D'oh!
Fix ISPCTL_TOGGLE_TMODE to correctly enable the right channel for
dual channel cards. Add some more opcodes. Fix a stupid NULL
pointer bug.
I was hanging after sending a xfer CTIO and a status CTIO for a non-discon
INQUIRY- the xfer CTIO was returned as completed OK, but the status CTIO
was dropped on the floor. All the fields looked good. I don't know why
it got dropped. But allowing status to go back with data xfer seemed to
work. I also noticed that with a non-disconnecting command that the
firmware handle in the ATIO is zero- this leads me to believe that the
f/w really can only handle one CTIO at a time in the discon case, and
it had no idea what to do with the second (status) CTIO.
CAM_SEND_STATUS. Set a timeout of 2 seconds per CTIO. Make sure
that the 'real' tag value is being checked against- not the
one that also carries the firmware handle.
the target mode code or outer layers.
Increase cd_tagval to be 32 bits since it will have to now carry 16
bits of parallel SCSI ATIO handle as well as a normal tag (if any).
Solaris (which, for reasons unknown to me, chokes on u_int16_t
as a typedef of unsigned short if used in a transitional (mixed K&R
and ANSI) way), we'll go the extra mile and fully ANSIfy things.
This is a pretty invasive change, but there are three good
reasons to do this:
1. We'll never have > 16 bits of handle.
2. We can (eventually) enable the RIO (Reduced Interrupt Operation)
bits which return multiple completing 16 bit handles in mailbox
registers.
3. The !)$*)$*~)@$*~)$* Qlogic target mode for parallel SCSI spec
changed such that at_reserved (which was 32 bits) was split into
two pieces- and one of which was a 16 bit handle id that functions
like the at_rxid for Fibre Channel (a tag for the f/w to correlate
CTIOs with a particular command). Since we had to muck with that
and this changed the whole handler architecture, we might as well...
Propagate new at_handle on through int ct_fwhandle. Follow
implications of changing to 16 bit handles.
These above changes at least get Qlogic 1040 cards working in target
mode again. 1080/12160 cards don't work yet.
In isp.c:
Prepare for doing all loop management in outer layers.
for selecting unit). Instead, use the resource hints mechanism.
One unfortunate situation here is that there is no resource_quad_value
function- which is what I needed for WWN boot time replacement. Worse-
you can't store the hint as just plain
hint.isp.0.nodewwn="0x50000000aaaa0001"
because this gets interpreted as an int- incorrectly because it can't
be converted to an int. I can't even get this as a string. To work
around this particular case for nodewwn && portwwn setting, this
rather grotesque form will be used:
hint.isp.0.nodewwn="w50000000aaaa0001"
hint.isp.0.portwwn="w50000000aaaa0002"
At the same time, if we have no hinted WWN, set the default WWN (which, btw,
gets overridden if the card has valid NVRAM, which is usual) to
0x400000007F000009ull (which translates to NAA == IPv4, 127.0.0.9).
Eliminate more printf's and replace them either with device_printf or
isp_prt calls.
ones where we have a CAM path) and replacing them with calls to isp_prt.,
Eliminate isp_unit references- we no longer have an isp_unit- we now
have an isp_dev that device_get_unit can work with.
for the ICB firmware options meant- *I* had taken it to
mean that if you set it, Node Name would be ignored and
derived from Port Name. Actually, it meant the opposite.
As a consequence- change ICBOPT_USE_PORTNAME to the
define ICBOPT_BOTH_WWNS- makes more sense.
Fix wrong input bitmap for MBOX_DUMP_RAM command. Call
ISP_DUMPREGS if we get a f/w crash. Add ISPCTL_RUN_MBOXCMD
control command (so outer layers can run a mailbox command
directly) and add a ISPASYNC_UNHANDLED_RESPONSE hook so
outer layers can understand response queue entries we
might not know about.
isp_iid_set/isp_iid for fibre channel- this is because we now
fake a port database entry for ourselves. Add the additional loop
states between LOOP_PDB_RCVD and LOOP_READY.
Change and comment on a wad of Fibre Channel isp_control functions.
Change and comment on some of the ISPASYNC Fibre Channel events.
the unit number doesn't get reused.
Make sure that if we've compiled for ISP_TARGET_MODE we set the
default role to be ISP_ROLE_INITIATOR|ISP_ROLE_TARGET.
Do some misc other cleanups.
and depending on role, make sure link is up, scan the fabric (if we're
connected to a fabric), scan the local loop (if appropriate), merge
the results into the local port database then, check once again
to make sure we have f/w at FW_READY state and the the loopstate
is LOOP_READY.
Comment out usage of ISP_SMPLOCK- I have my doubts that this works sanely
as yet because CAM itself still needs Giant. I *was* dropping my lock
and grabbing Giant when doing the upcall for completion, but this is all
seems ridiculous until CAM is fixed.
if we're ISP_ROLE_NONE. Change ISPASYNC_LOGGED_INOUT to ISPASYNC_PROMENADE.
Make sure we note if something is a fabric device.
Target mode:
Finally fix (to a first approximation) SCSI Target Mode again- we needed
to correctly check against CAM_TARGET_WILDCARD and CAM_LUN_WILDCARD
so that targbh won't confuse us. Comment out the drainqueue stuff for
now. Use isp_fc_runstate instead if isp_control/ISPCTL_FCLINK_TEST.
Remove ISP2100_FABRIC defines- we always handle fabric now. Insert
isp_getmap helper function (for getting Loop Position map). Make
sure we (for our own benefit) mark req_state_flags with RQSF_GOT_SENSE
for Fibre Channel if we got sense data- the !*$)!*$)~*$)*$ Qlogic
f/w doesn't do so. Add ISPCTL_SCAN_FABRIC, ISPCTL_SCAN_LOOP, ISPCTL_SEND_LIP,
and ISPCTL_GET_POSMAP isp_control functions. Correctly send async notifications
upstream for changes in the name server, changes in the port database, and
f/w crashes. Correctly set topology when we get a ASYNC_PTPMODE event.
Major stuff:
Quite massively redo how we handle Loop events- we've now added several
intermediate states between LOOP_PDB_RCVD and LOOP_READY. This allows us
a lot finer control about how we scan fabric, whether we go further
than scanning fabric, how we look at the local loop, and whether we
merge entries at the level or not. This is the next to last step for
moving managing loop state out of the core module entirely (whereupon
loop && fabric events will simply freeze the command queue and a thread
will run to figure out what's changed and *it* will re-enable the queu).
This fine amount of control also gets us closer to having an external
policy engine decide which fabric devices we really want to log into.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
(so we can see rapidly whether something was a fabric device but is
now gone).
Add a tag which says what role this adapter should take. It can take
on the value of None, Target, Initiator or Both. None is useful for
warm failover purposes. Remove the ISP_CFG_NOINIT silliness since
a role of "None" does this.
Add a isp_lastmbxcmd tag to store the opcode for the last mailbox
command used.