Removed dead code that assumed that M_TRYWAIT can return NULL; it's not true
since the advent of MBUMA.
Reviewed by: arch
There are ongoing disputes as to whether we want to switch to directly using
UMA flags M_WAITOK/M_NOWAIT for mbuf(9) allocation.
BO_LOCK/UNLOCK/MTX when manipulating the bufobj.
- Create a new lock in the bufobj to lock bufobj fields independently.
This leaves the vnode interlock as an 'identity' lock while the bufobj
is an io lock. The bufobj lock is ordered before the vnode interlock
and also before the mnt ilock.
- Exploit this new lock order to simplify softdep_check_suspend().
- A few sync related functions are marked with a new XXX to note that
we may not properly interlock against a non-zero bv_cnt when
attempting to sync all vnodes on a mountlist. I do not believe this
race is important. If I'm wrong this will make these locations easier
to find.
Reviewed by: kib (earlier diff)
Tested by: kris, pho (earlier diff)
conjuction with 'thread' argument passing which is always curthread.
Remove the unuseful extra-argument and pass explicitly curthread to lower
layer functions, when necessary.
KPI results broken by this change, which should affect several ports, so
version bumping and manpage update will be further committed.
Tested by: kris, pho, Diego Sardina <siarodx at gmail dot com>
Remove this argument and pass curthread directly to underlying
VOP_LOCK1() VFS method. This modify makes the code cleaner and in
particular remove an annoying dependence helping next lockmgr() cleanup.
KPI results, obviously, changed.
Manpage and FreeBSD_version will be updated through further commits.
As a side note, would be valuable to say that next commits will address
a similar cleanup about VFS methods, in particular vop_lock1 and
vop_unlock.
Tested by: Diego Sardina <siarodx at gmail dot com>,
Andrea Di Pasquale <whyx dot it at gmail dot com>
Only ops which used namei still remained.
- Implement a scheme for reducing the overhead of tracking which vops
require giant by constantly reducing the number of recursive giant
acquires to one, leaving us with only one vfslocked variable.
- Remove all NFSD lock acquisition and release from the individual nfs
ops. Careful examination has shown that they are not required. This
greatly simplifies the code.
Sponsored by: Isilon Systems, Inc.
Discussed with: rwatson
Tested by: kkenn
Approved by: re
This way we may support multiple structures in v_data vnode field within
one file system without using black magic.
Vnode-to-file-handle should be VOP in the first place, but was made VFS
operation to keep interface as compatible as possible with SUN's VFS.
BTW. Now Solaris also implements vnode-to-file-handle as VOP operation.
VFS_VPTOFH() was left for API backward compatibility, but is marked for
removal before 8.0-RELEASE.
Approved by: mckusick
Discussed with: many (on IRC)
Tested with: ufs, msdosfs, cd9660, nullfs and zfs
forward cases by converting from unconditional acquisition of Giant
around vnode operations to conditional acquisition:
- Remove nfsrv_access_withgiant(), and cause nfsrv_access() to now
assert that Giant will be held if it is required for the vnode.
- Add nfsrv_fhtovp_locked(), which will drop the NFS server lock if
required, and modify nfsrv_fhtovp() to conditionally acquire
Giant if required.
- In the VOP's not dealing with more than one vnode at a time (i.e.,
not involving a lookup), conditionally acquire Giant.
This removes Giant use for MPSAFE file systems for a number of quite
important RPCs, including getattr, read, write. It leaves
unconditional Giant acquisitions in vnode operations that interact
with the name space or more than one vnode at a time as these
require further work.
Tested by: kris
Reviewed by: kib
directory. vrele() may lock the passed vnode, which in these cases would
give an invalid lock order of child -> parent. These situations are
deadlock prone although do not typically deadlock because the vrele
is typically not releasing the last reference to the vnode. Users of
vrele must consider it as a call to vn_lock() and order it appropriately.
MFC After: 1 week
Sponsored by: Isilon Systems, Inc.
Tested by: kkenn
kern_prot.c. This API handles reference counting among many other things.
Notably, if MAC is compiled into the kernel, it will properly initialize the
MAC labels when the ucred is allocated.
This work is in preparation for a new MAC entry point which will be responsible
for properly initializing policy specific labels for the NFS server credential.
Utilization of the crfree/crget APIs reduce the complexity associated with
this label's management.
Submitted by: green (with changes) [1]
Obtained from: TrustedBSD Project
Discussed with: rwatson, alfred
[1] I moved the ucred allocation outside the scope of the NFS server lock to
prevent M_WAIKOK allocations from occurring with non-sleep-able locks held.
Additionally, to reduce complexity, the ucred persist as long as the NFS
server descriptor.
to see if additional write requests will arrive that can be coalesced and
clustered with earlier ones. When doing so, it must determine whether
the two requests are made by credentials with the same access writes, so
as not to coalesce improperly. NFSW_SAMECRED() implements a test of two
credentials using a binary compare.
Replace NFSW_SAMECRED() macro with nfsrv_samecred() function, which is
aware of the contents and layout of a struct ucred, rather than a simple
binary compare. While the binary compare works when ucred is simply a
zero'd and embedded 'struct ucred' in the NFS descriptor, it will work
less well when the ucred associated with an NFS descriptor is "real", so
has defined and populated reference count, mutex, etc.
MFC after: 1 week
Obtained from: TrustedBSD Project
I'm not sure why a credential was added to these in the first place, it is
not used anywhere and it doesn't make much sense:
The credentials for syncing a file (ability to write to the
file) should be checked at the system call level.
Credentials for syncing one or more filesystems ("none")
should be checked at the system call level as well.
If the filesystem implementation needs a particular credential
to carry out the syncing it would logically have to the
cached mount credential, or a credential cached along with
any delayed write data.
Discussed with: rwatson
be made holding the NFS server mutex. To clean this up, introduce a
version of the function, nfsrv_access_withgiant(), that expects the
NFS server mutex to already have been dropped and Giant acquired.
Wrap nfsrv_access() around this. This permits callers to more
efficiently check access if they're in a code block performing VFS
operations, and can be substitited for the nfsrv_access() call that
triggered this bug.
PR: 73807, 73208
MFC after: 1 week
Initialize b_bufobj for all buffers.
Make incore() and gbincore() take a bufobj instead of a vnode.
Make inmem() local to vfs_bio.c
Change a lot of VI_[UN]LOCK(bp->b_vp) to BO_[UN]LOCK(bp->b_bufobj)
also VI_MTX() to BO_MTX(),
Make buf_vlist_add() take a bufobj instead of a vnode.
Eliminate other uses of bp->b_vp where bp->b_bufobj will do.
Various minor polishing: remove "register", turn panic into KASSERT,
use new function declarations, TAILQ_FOREACH_SAFE() etc.
failure in the NFS server would result in a leaked instance of the NFS
server subsystem lock. Liberally sprinkle assertions in all target
labels for error unwinding to assert the desired locking state.
RELENG_5_3 candidate.
MFC after: 3 days
Reported by: Wilkinson, Alex <alex dot wilkinson at dsto dot defence dot gov dot au>
prevent leakage of Giant. With INVARIANTS, this results in an
assertion failure following execution of the RPC. Without INVARIANTS,
it could result in problems if the NFS server is killed causing nfsd
to return to user space holding Giant.
Feet provided by: brueffer
The big lines are:
NODEV -> NULL
NOUDEV -> NODEV
udev_t -> dev_t
udev2dev() -> findcdev()
Various minor adjustments including handling of userland access to kernel
space struct cdev etc.
a vnode. Not bumped into with asserts in the main tree because we
run the NFS server with Giant by default. Discovered by inspection.
Complete annotations of Giant acquisition/release to note that it's
only because of VFS that we acquire Giant in most places in the NFS
server.
subsystem lock to avoid tripping over an assertion regarding whether
the lock is held or not. This is likely to be the cause of a panic
tripped over by Andrea Campi.
mechanism so that early processing on mbufs can be performed before
a context switch to the NFS server threads. Because of this, if
the socket code is running without Giant, the NFS server also needs
to be able to run the upcall code without relying on the presence on
Giant. This change modifies the NFS server to run using a "giant
code lock" covering operation of the whole subsystem. Work is in
progress to move to data-based locking as part of the NFSv4 server
changes.
Introduce an NFS server subsystem lock, 'nfsd_mtx', and a set of
macros to operate on the lock:
NFSD_LOCK_ASSERT() Assert nfsd_mtx owned by current thread
NFSD_UNLOCK_ASSERT() Assert nfsd_mtx not owned by current thread
NFSD_LOCK_DONTCARE() Advisory: this function doesn't care
NFSD_LOCK() Lock nfsd_mtx
NFSD_UNLOCK() Unlock nfsd_mtx
Constify a number of global variables/structures in the NFS server
code, as they are not modified and contain constants only:
nfsrvv2_procid nfsrv_nfsv3_procid nonidempotent
nfsv2_repstat nfsv2_type nfsrv_nfsv3_procid
nfsrvv2_procid nfsrv_v2errmap nfsv3err_null
nfsv3err_getattr nfsv3err_setattr nfsv3err_lookup
nfsv3err_access nfsv3err_readlink nfsv3err_read
nfsv3err_write nfsv3err_create nfsv3err_mkdir
nfsv3err_symlink nfsv3err_mknod nfsv3err_remove
nfsv3err_rmdir nfsv3err_rename nfsv3err_link
nfsv3err_readdir nfsv3err_readdirplus nfsv3err_fsstat
nfsv3err_fsinfo nfsv3err_pathconf nfsv3err_commit
nfsrv_v3errmap
There are additional structures that should be constified but due
to their being passed into general purpose functions without const
arguments, I have not yet converted.
In general, acquire nfsd_mtx when accessing any of the global NFS
structures, including struct nfssvc_sock, struct nfsd, struct
nfsrv_descript.
Release nfsd_mtx whenever calling into VFS, and acquire Giant for
calls into VFS. Giant is not required for any part of the
operation of the NFS server with the exception of calls into VFS.
Giant will never by acquired in the upcall code path. However, it
may operate entirely covered by Giant, or not. If debug.mpsafenet
is set to 0, the system calls will acquire Giant across all
operations, and the upcall will assert Giant. As such, by default,
this enables locking and allows us to test assertions, but should not
cause any substantial new amount of code to be run without Giant.
Bugs should manifest in the form of lock assertion failures for now.
This approach is similar (but not identical) to modifications to the
BSD/OS NFS server code snapshot provided by BSDi as part of their
SMPng snapshot. The strategy is almost the same (single lock over
the NFS server), but differs in the following ways:
- Our NFS client and server code bases don't overlap, which means
both fewer bugs and easier locking (thanks Peter!). Also means
NFSD_*() as opposed to NFS_*().
- We make broad use of assertions, whereas the BSD/OS code does not.
- Made slightly different choices about how to handle macros building
packets but operating with side effects.
- We acquire Giant only when entering VFS from the NFS server daemon
threads.
- Serious bugs in BSD/OS implementation corrected -- the snapshot we
received was clearly a work in progress.
Based on ideas from: BSDi SMPng Snapshot
Reviewed by: rick@snowhite.cis.uoguelph.ca
Extensive testing by: kris
FreeBSD, we can have a negative available space value, but the
corresponding fields in the NFS protocol are unsigned. So
trnucate the value to 0 if it's negative, so that the client
doesn't receive absurdly high values.
Tested by: cognet
short read operations at the end of a file to not have the "eof"
flag set as they should. The problem is that the requested read
count was compared against the rounded-up reply data length instead
of the actual reply data length. This bug appears to have been
introduced in revision 1.78 (June 1999). It causes first-time reads
of certain file sizes (e.g 4094 bytes) to fail with EIO on a RedHat
9.0 NFSv3 client.
MFC after: 1 week
when serving up more than about 32 active files. For details see
section 6.3 (pg 111) of Daniel Ellard and Margo Seltzer, ``NFS
Tricks and Benchmarking Traps'' in the Proceedings of the Usenix
2003 Freenix Track, June 9-14, 2003 pg 101-114.
Obtained from: Daniel Ellard <ellard@eecs.harvard.edu>
Sponsored by: DARPA & NAI Labs.
is not pretty, but it fixes the code so that it no longer violates the
vnode locking rules in the VFS API and doesn't trip any of the locking
assertions enabled by the DEBUG_VFS_LOCKS kernel configuration option.
There is one report that this patch fixed a "locking against myself"
panic on an NFS server that was tripped by a diskless client.
Approved by: re (scottl)
- Add a parameter to vm_pageout_flush() that tells vm_pageout_flush()
whether its caller has locked the vm_object. (This is a temporary
measure to bootstrap vm_object locking.)
- Remove the buftimelock mutex and acquire the buf's interlock to protect
these fields instead.
- Hold the vnode interlock while locking bufs on the clean/dirty queues.
This reduces some cases from one BUF_LOCK with a LK_NOWAIT and another
BUF_LOCK with a LK_TIMEFAIL to a single lock.
Reviewed by: arch, mckusick