our cached 'next vnode' being removed from this mountpoint. If we
find that it was recycled, we restart our traversal from the start
of the list.
Code to do that is in all local disk filesystems (and a few other
places) and looks roughly like this:
MNT_ILOCK(mp);
loop:
for (vp = TAILQ_FIRST(&mp...);
(vp = nvp) != NULL;
nvp = TAILQ_NEXT(vp,...)) {
if (vp->v_mount != mp)
goto loop;
MNT_IUNLOCK(mp);
...
MNT_ILOCK(mp);
}
MNT_IUNLOCK(mp);
The code which takes vnodes off a mountpoint looks like this:
MNT_ILOCK(vp->v_mount);
...
TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
...
MNT_IUNLOCK(vp->v_mount);
...
vp->v_mount = something;
(Take a moment and try to spot the locking error before you read on.)
On a SMP system, one CPU could have removed nvp from our mountlist
but not yet gotten to assign a new value to vp->v_mount while another
CPU simultaneously get to the top of the traversal loop where it
finds that (vp->v_mount != mp) is not true despite the fact that
the vnode has indeed been removed from our mountpoint.
Fix:
Introduce the macro MNT_VNODE_FOREACH() to traverse the list of
vnodes on a mountpoint while taking into account that vnodes may
be removed from the list as we go. This saves approx 65 lines of
duplicated code.
Split the insmntque() which potentially moves a vnode from one mount
point to another into delmntque() and insmntque() which does just
what the names say.
Fix delmntque() to set vp->v_mount to NULL while holding the
mountpoint lock.
stuff was here (NFS) was fixed by Alfred in November. The only remaining
consumer of the stub functions was umapfs, which is horribly horribly
broken. It has missed out on about the last 5 years worth of maintenence
that was done on nullfs (from which umapfs is derived). It needs major
work to bring it up to date with the vnode locking protocol. umapfs really
needs to find a caretaker to bring it into the 21st century.
Functions GC'ed:
vop_noislocked, vop_nolock, vop_nounlock, vop_sharedlock.
Introduce two new macros MNT_ILOCK(mp)/MNT_IUNLOCK(mp) to
operate on this mutex transparently.
Eventually new mutex will be protecting more fields in
struct mount, not only vnode list.
Discussed with: jeff
wasn't curthread, i.e. when we receive a thread pointer to use
as a function argument. Use VOP_UNLOCK/vrele in these cases.
The only case there td != curthread known at the moment is
boot() calling sync with thread0 pointer.
This fixes the panic on shutdown people have reported.
do exactly the same as vop_nopoll() for consistency and put a
comment in the two pointing at each other.
Retire seltrue() in favour of no_poll().
Create private default functions in kern_conf.c instead of public
ones.
Change default strategy to return the bio with ENODEV instead of
doing nothing which would lead the bio stranded.
Retire public nullopen() and nullclose() as well as the entire band
of public no{read,write,ioctl,mmap,kqfilter,strategy,poll,dump}
funtions, they are the default actions now.
Move the final two trivial functions from subr_xxx.c to kern_conf.c
and retire the now empty subr_xxx.c
requiring locked bufs in vfs_bio_awrite(). Previously the buf could
have been written out by fsync before we acquired the buf lock if it
weren't for giant. The cluster_wbuild() handles this race properly but
the single write at the end of vfs_bio_awrite() would not.
- Modify flushbufqueues() so there is only one copy of the loop. Pass a
parameter in that says whether or not we should sync bufs with deps.
- Call flushbufqueues() a second time and then break if we couldn't find
any bufs without deps.
closely what function is really doing. Update all existing consumers
to use the new name.
Introduce a new vfs_stdsync function, which iterates over mount
point's vnodes and call FSYNC on each one of them in turn.
Make nwfs and smbfs use this new function instead of rolling their
own identical sync implementations.
Reviewed by: jeff
- Remove the buftimelock mutex and acquire the buf's interlock to protect
these fields instead.
- Hold the vnode interlock while locking bufs on the clean/dirty queues.
This reduces some cases from one BUF_LOCK with a LK_NOWAIT and another
BUF_LOCK with a LK_TIMEFAIL to a single lock.
Reviewed by: arch, mckusick
that is protected by the vnode lock.
- Move B_SCANNED into b_vflags and call it BV_SCANNED.
- Create a vop_stdfsync() modeled after spec's sync.
- Replace spec_fsync, msdos_fsync, and hpfs_fsync with the stdfsync and some
fs specific processing. This gives all of these filesystems proper
behavior wrt MNT_WAIT/NOWAIT and the use of the B_SCANNED flag.
- Annotate the locking in buf.h
to sort out disk-io from file-io in the vm/buffer/filesystem space.
The intent is to sort VOP_STRATEGY calls into those which operate
on "real" vnodes and those which operate on VCHR vnodes. For
the latter kind, the call will be changed to VOP_SPECSTRATEGY,
possibly conditionally for those places where dual-use happens.
Add a default VOP_SPECSTRATEGY method which will call the normal
VOP_STRATEGY. First time it is called it will print debugging
information. This will only happen if a normal vnode is passed
to VOP_SPECSTRATEGY by mistake.
Add a real VOP_SPECSTRATEGY in specfs, which does what VOP_STRATEGY
does on a VCHR vnode today.
Add a new VOP_STRATEGY method in specfs to catch instances where
the conversion to VOP_SPECSTRATEGY has not yet happened. Handle
the request just like we always did, but first time called print
debugging information.
Apart up to two instances of console messages per boot, this amounts
to a glorified no-op commit.
If you get any of the messages on your console I would very much
like a copy of them mailed to phk@freebsd.org
that use it. Specifically, vop_stdlock uses the lock pointed to by
vp->v_vnlock. By default, getnewvnode sets up vp->v_vnlock to
reference vp->v_lock. Filesystems that wish to use the default
do not need to allocate a lock at the front of their node structure
(as some still did) or do a lockinit. They can simply start using
vn_lock/VOP_UNLOCK. Filesystems that wish to manage their own locks,
but still use the vop_stdlock functions (such as nullfs) can simply
replace vp->v_vnlock with a pointer to the lock that they wish to
have used for the vnode. Such filesystems are responsible for
setting the vp->v_vnlock back to the default in their vop_reclaim
routine (e.g., vp->v_vnlock = &vp->v_lock).
In theory, this set of changes cleans up the existing filesystem
lock interface and should have no function change to the existing
locking scheme.
Sponsored by: DARPA & NAI Labs.
to do this made the following script hang:
#!/bin/sh
set -ex
extattrctl start /tmp
extattrctl initattr 64 /tmp/EA00
extattrctl enable /tmp user ea00 /tmp/EA00
extattrctl showattr /tmp/EA00
if the filesystem backing /tmp did not support EAs.
The real solution is probably to have the extattrctl syscall do the
unlocking rather than depend on the filesystem to do it. Considering
that extattrctl is going to be made obsolete anyway, this has dogwash
priority.
Sponsored by: DARPA & NAI Labs.
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
locking flags when acquiring a vnode. The immediate purpose is
to allow polling lock requests (LK_NOWAIT) needed by soft updates
to avoid deadlock when enlisting other processes to help with
the background cleanup. For the future it will allow the use of
shared locks for read access to vnodes. This change touches a
lot of files as it affects most filesystems within the system.
It has been well tested on FFS, loopback, and CD-ROM filesystems.
only lightly on the others, so if you find a problem there, please
let me (mckusick@mckusick.com) know.
Includes some minor whitespace changes, and re-ordering to be able to document
properly (e.g, grouping of variables and the SYSCTL macro calls for them, where
the documentation has been added.)
Reviewed by: phk (but all errors are mine)
terminated and flushes pending dirty pages it is possible for the
object to be ref'd (0->1) and then deref'd (1->0) during termination.
We do not terminate the object a second time.
Document vop_stdgetvobject() to explicitly allow it to be called without
the vnode interlock held (for upcoming sync_msync() and ffs_sync()
performance optimizations)
MFC after: 3 days
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
Make 7 filesystems which don't really know about VOP_BMAP rely
on the default vector, rather than more or less complete local
vop_nopbmap() implementations.
to struct mount.
This makes the "struct netexport *" paramter to the vfs_export
and vfs_checkexport interface unneeded.
Consequently that all non-stacking filesystems can use
vfs_stdcheckexp().
At the same time, make it a pointer to a struct netexport
in struct mount, so that we can remove the bogus AF_MAX
and #include <net/radix.h> from <sys/mount.h>