- It was decided to change the driver name to if_ixl for FreeBSD
- This release adds the VF Driver to the tree, it can be built into
the kernel or as the if_ixlv module
- The VF driver is independent for the first time, this will be
desireable when full SRIOV capability is added to the OS.
- Thanks to my new coworker Eric Joyner for his superb work in
both the core and vf driver code.
Enjoy everyone!
Submitted by: jack.vogel@intel.com and eric.joyner@intel.com
MFC after: 3 days (hoping to make 10.1)
UNIX systems, eg. MacOS X and Solaris. It uses Sun-compatible map format,
has proper kernel support, and LDAP integration.
There are still a few outstanding problems; they will be fixed shortly.
Reviewed by: allanjude@, emaste@, kib@, wblock@ (earlier versions)
Phabric: D523
MFC after: 2 weeks
Relnotes: yes
Sponsored by: The FreeBSD Foundation
Mostly bugfixes or features developed in the past 6 months,
so this is a 10.1 candidate.
Basically no user API changes (some bugfixes in sys/net/netmap_user.h).
In detail:
1. netmap support for virtio-net, including in netmap mode.
Under bhyve and with a netmap backend [2] we reach over 1Mpps
with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode.
2. (kernel) add support for multiple memory allocators, so we can
better partition physical and virtual interfaces giving access
to separate users. The most visible effect is one additional
argument to the various kernel functions to compute buffer
addresses. All netmap-supported drivers are affected, but changes
are mechanical and trivial
3. (kernel) simplify the prototype for *txsync() and *rxsync()
driver methods. All netmap drivers affected, changes mostly mechanical.
4. add support for netmap-monitor ports. Think of it as a mirroring
port on a physical switch: a netmap monitor port replicates traffic
present on the main port. Restrictions apply. Drive carefully.
5. if_lem.c: support for various paravirtualization features,
experimental and disabled by default.
Most of these are described in our ANCS'13 paper [1].
Paravirtualized support in netmap mode is new, and beats the
numbers in the paper by a large factor (under qemu-kvm,
we measured gues-host throughput up to 10-12 Mpps).
A lot of refactoring and additional documentation in the files
in sys/dev/netmap, but apart from #2 and #3 above, almost nothing
of this stuff is visible to other kernel parts.
Example programs in tools/tools/netmap have been updated with bugfixes
and to support more of the existing features.
This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline.
A lot of this code has been contributed by my colleagues at UNIPI,
including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella.
MFC after: 3 days.
* Rewrite interface tables to use interface indexes
Kernel changes:
* Add generic interface tracking API:
- ipfw_iface_ref (must call unlocked, performs lazy init if needed, allocates
state & bumps ref)
- ipfw_iface_add_ntfy(UH_WLOCK+WLOCK, links comsumer & runs its callback to
update ifindex)
- ipfw_iface_del_ntfy(UH_WLOCK+WLOCK, unlinks consumer)
- ipfw_iface_unref(unlocked, drops reference)
Additionally, consumer callbacks are called in interface withdrawal/departure.
* Rewrite interface tables to use iface tracking API. Currently tables are
implemented the following way:
runtime data is stored as sorted array of {ifidx, val} for existing interfaces
full data is stored inside namedobj instance (chained hashed table).
* Add IP_FW_XIFLIST opcode to dump status of tracked interfaces
* Pass @chain ptr to most non-locked algorithm callbacks:
(prepare_add, prepare_del, flush_entry ..). This may be needed for better
interaction of given algorithm an other ipfw subsystems
* Add optional "change_ti" algorithm handler to permit updating of
cached table_info pointer (happens in case of table_max resize)
* Fix small bug in ipfw_list_tables()
* Add badd (insert into sorted array) and bdel (remove from sorted array) funcs
Userland changes:
* Add "iflist" cmd to print status of currently tracked interface
* Add stringnum_cmp for better interface/table names sorting
so it really should not be under "optional inet". The fact that uipc_accf.c
lives under kern/ lends some weight to making it a "standard" file.
Moving kern/uipc_accf.c from "optional inet" to "standard" eliminates the
need for #ifdef INET in kern/uipc_socket.c.
Also, this meant the net.inet.accf.unloadable sysctl needed to move, as
net.inet does not exist without networking compiled in (as it lives in
netinet/in_proto.c.) The new sysctl has been named net.accf.unloadable.
In order to support existing accept filter sysctls, the net.inet.accf node
has been added netinet/in_proto.c.
Submitted by: Steve Kiernan <stevek@juniper.net>
Obtained from: Juniper Networks, Inc.
This allows to clone VMs and move them between LUNs inside one storage
host without generating extra network traffic to the initiator and back,
and without being limited by network bandwidth.
LUNs participating in copy operation should have UNIQUE NAA or EUI IDs set.
For LUNs without these IDs VMWare will use traditional copy operations.
Beware: the above LUN IDs explicitly set to values non-unique from the VM
cluster point of view may cause data corruption if wrong LUN is addressed!
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
into head. The code is not believed to have any effect
on the semantics of non-NFSv4.1 server behaviour.
It is a rather large merge, but I am hoping that there will
not be any regressions for the NFS server.
MFC after: 1 month
Since there's no ACPI on PVH guests, we need to create a dummy CPU
device in order to fill the pcpu->pc_device field.
Sponsored by: Citrix Systems R&D
Approved by: gibbs
dev/xen/pvcpu/pvcpu.c:
- Create a dummy CPU device for PVH guests in order to fill the
per-cpu pc_device field.
conf/files:
- Add the pvcpu device to kernels using XEN or XENHVM options.
Kernel-side changelog:
* Split general tables code and algorithm-specific table data.
Current algorithms (IPv4/IPv6 radix and interface tables radix) moved to
new ip_fw_table_algo.c file.
Tables code now supports any algorithm implementing the following callbacks:
+struct table_algo {
+ char name[64];
+ int idx;
+ ta_init *init;
+ ta_destroy *destroy;
+ table_lookup_t *lookup;
+ ta_prepare_add *prepare_add;
+ ta_prepare_del *prepare_del;
+ ta_add *add;
+ ta_del *del;
+ ta_flush_entry *flush_entry;
+ ta_foreach *foreach;
+ ta_dump_entry *dump_entry;
+ ta_dump_xentry *dump_xentry;
+};
* Change ->state, ->xstate, ->tabletype fields of ip_fw_chain to
->tablestate pointer (array of 32 bytes structures necessary for
runtime lookups (can be probably shrinked to 16 bytes later):
+struct table_info {
+ table_lookup_t *lookup; /* Lookup function */
+ void *state; /* Lookup radix/other structure */
+ void *xstate; /* eXtended state */
+ u_long data; /* Hints for given func */
+};
* Add count method for namedobj instance to ease size calculations
* Bump ip_fw3 buffer in ipfw_clt 128->256 bytes.
* Improve bitmask resizing on tables_max change.
* Remove table numbers checking from most places.
* Fix wrong nesting in ipfw_rewrite_table_uidx().
* Add IP_FW_OBJ_LIST opcode (list all objects of given type, currently
implemented for IPFW_OBJTYPE_TABLE).
* Add IP_FW_OBJ_LISTSIZE (get buffer size to hold IP_FW_OBJ_LIST data,
currenly implemented for IPFW_OBJTYPE_TABLE).
* Add IP_FW_OBJ_INFO (requests info for one object of given type).
Some name changes:
s/ipfw_xtable_tlv/ipfw_obj_tlv/ (no table specifics)
s/ipfw_xtable_ntlv/ipfw_obj_ntlv/ (no table specifics)
Userland changes:
* Add do_set3() cmd to ipfw2 to ease dealing with op3-embeded opcodes.
* Add/improve support for destroy/info cmds.
using a direct hook called from kern_vfs_bio_buffer_alloc().
Mark ffs_rawread.c as requiring both ffs and directio options to be
compiled into the kernel. Add ffs_rawread.c to the list of ufs.ko
module' sources.
In addition to stopping breaking the layering violation, it also
allows to link kernel when FFS is configured as module and DIRECTIO is
enabled.
One consequence of the change is that ffs_rawread.o is always linked
into the module regardless of the DIRECTIO option. This is similar to
the option QUOTA and ufs_quota.c.
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
- Update FDT file for BERI DE4 boards.
- Add needed kernel configuration keywords.
- Rename module to saf1761otg so that the device unit number does not
interfere with the hardware ID in dmesg.
Sponsored by: DARPA, AFRL
Netmap gets its own hardware-assisted virtual interface and won't take
over or disrupt the "normal" interface in any way. You can use both
simultaneously.
For kernels with DEV_NETMAP, cxgbe(4) carves out an ncxl<N> interface
(note the 'n' prefix) in the hardware to accompany each cxl<N>
interface. These two ifnet's per port share the same wire but really
are separate interfaces in the hardware and software. Each gets its own
L2 MAC addresses (unicast and multicast), MTU, checksum caps, etc. You
should run netmap on the 'n' interfaces only, that's what they are for.
With this, pkt-gen is able to transmit > 45Mpps out of a single 40G port
of a T580 card. 2 port tx is at ~56Mpps total (28M + 28M) as of now.
Single port receive is at 33Mpps but this is very much a work in
progress. I expect it to be closer to 40Mpps once done. In any case
the current effort can already saturate multiple 10G ports of a T5 card
at the smallest legal packet size. T4 gear is totally untested.
trantor:~# ./pkt-gen -i ncxl0 -f tx -D 00:07:43🆎cd:ef
881.952141 main [1621] interface is ncxl0
881.952250 extract_ip_range [275] range is 10.0.0.1:0 to 10.0.0.1:0
881.952253 extract_ip_range [275] range is 10.1.0.1:0 to 10.1.0.1:0
881.962540 main [1804] mapped 334980KB at 0x801dff000
Sending on netmap:ncxl0: 4 queues, 1 threads and 1 cpus.
10.0.0.1 -> 10.1.0.1 (00:00:00:00:00:00 -> 00:07:43🆎cd:ef)
881.962562 main [1882] Sending 512 packets every 0.000000000 s
881.962563 main [1884] Wait 2 secs for phy reset
884.088516 main [1886] Ready...
884.088535 nm_open [457] overriding ifname ncxl0 ringid 0x0 flags 0x1
884.088607 sender_body [996] start
884.093246 sender_body [1064] drop copy
885.090435 main_thread [1418] 45206353 pps (45289533 pkts in 1001840 usec)
886.091600 main_thread [1418] 45322792 pps (45375593 pkts in 1001165 usec)
887.092435 main_thread [1418] 45313992 pps (45351784 pkts in 1000834 usec)
888.094434 main_thread [1418] 45315765 pps (45406397 pkts in 1002000 usec)
889.095434 main_thread [1418] 45333218 pps (45378551 pkts in 1001000 usec)
890.097434 main_thread [1418] 45315247 pps (45405877 pkts in 1002000 usec)
891.099434 main_thread [1418] 45326515 pps (45417168 pkts in 1002000 usec)
892.101434 main_thread [1418] 45333039 pps (45423705 pkts in 1002000 usec)
893.103434 main_thread [1418] 45324105 pps (45414708 pkts in 1001999 usec)
894.105434 main_thread [1418] 45318042 pps (45408723 pkts in 1002001 usec)
895.106434 main_thread [1418] 45332430 pps (45377762 pkts in 1001000 usec)
896.107434 main_thread [1418] 45338072 pps (45383410 pkts in 1001000 usec)
...
Relnotes: Yes
Sponsored by: Chelsio Communications.
The CUSE library is a wrapper for the devfs kernel functionality which
is exposed through /dev/cuse . In order to function the CUSE kernel
code must either be enabled in the kernel configuration file or loaded
separately as a module. Currently none of the committed items are
connected to the default builds, except for installing the needed
header files. The CUSE code will be connected to the default world and
kernel builds in a follow-up commit.
The CUSE module was written by Hans Petter Selasky, somewhat inspired
by similar functionality found in FUSE. The CUSE library can be used
for many purposes. Currently CUSE is used when running Linux kernel
drivers in user-space, which need to create a character device node to
communicate with its applications. CUSE has full support for almost
all devfs functionality found in the kernel:
- kevents
- read
- write
- ioctl
- poll
- open
- close
- mmap
- private per file handle data
Requested by several people. Also see "multimedia/cuse4bsd-kmod" in
ports.
ismt(4) supports the SMBus Message Transport controller found on Intel
C2000 series (Avoton) and S1200 series (Briarwood) Atom SoCs.
Sponsored by: Intel
Intel 40G Ethernet Controller XL710 Family. This is
the core driver, a VF driver called i40evf, will be
following soon. Questions or comments to myself or
my co-developer Eric Joyner. Cheers!
This driver supports the low and high precision models (9 and 11 bits) and
it will auto-detect the both variants.
The driver expose the temperature registers (actual temperature, shutdown
and hysteresys temperature) and also the configuration register.
It was tested on FDT systems: RPi, BBB and on non-FDT systems: AR71xx, with
both, hardware i2c controllers (when available) and gpioiic(4).
This provides a simple and cheap way for verifying the i2c bus on embedded
systems.
cards. LSI has been maintaining this driver outside of the FreeBSD
tree. It overlaps support of ThunderBolt and Invader cards that mfi(4)
supports. By default mfi(4) will attach to cards. If the tunable:
hw.mfi.mrsas_enable=1
is set then mfi(4) will not probe and attach to these newer cards and
allow mrsas(4) to attach. So by default this driver will not effect
a FreeBSD system unless mfi(4) is removed from the kernel or the
tunable is enabled.
mrsas(4) attaches disks to the CAM layer so it depends on CAM and devices
show up as /dev/daX. mfiutil(8) does not work with mrsas. The FreeBSD
version of MegaCli and StorCli from LSI do work with mrsas. It appears
that StorCli only works with mrsas. MegaCli appears to work with mfi(4)
and mrsas(4).
It would be good to add mfiutil(4) support to mrsas, emulations modes,
kernel logging, device aliases to ease the transition between mfi(4)
and mrsas(4).
Style issues should be resolved by LSI when they get committers approved.
The plan is get this driver in FreeBSD 9.3 to improve HW support.
Thanks to LSI for developing, testing and working with FreeBSD to
make this driver co-exist in FreeBSD. This improves the overall
support of MegaRAID SAS.
Submitted by: Kashyap Desai <Kashyap.Desai@lsi.com>
Reviewed by: scottl
MFC after: 3 days
Sponsored by: LSI
This is derived from the mps(4) driver, but it supports only the 12Gb
IT and IR hardware including the SAS 3004, SAS 3008 and SAS 3108.
Some notes about this driver:
o The 12Gb hardware can do "FastPath" I/O, and that capability is included in
this driver.
o WarpDrive functionality has been removed, since it isn't supported in
the 12Gb driver interface.
o The Scatter/Gather list handling code is significantly different between
the 6Gb and 12Gb hardware. The 12Gb boards support IEEE Scatter/Gather
lists.
Thanks to LSI for developing and testing this driver for FreeBSD.
share/man/man4/mpr.4:
mpr(4) man page.
sys/dev/mpr/*:
mpr(4) driver files.
sys/modules/Makefile,
sys/modules/mpr/Makefile:
Add a module Makefile for the mpr(4) driver.
sys/conf/files:
Add the mpr(4) driver.
sys/amd64/conf/GENERIC,
sys/i386/conf/GENERIC,
sys/mips/conf/OCTEON1,
sys/sparc64/conf/GENERIC:
Add the mpr(4) driver to all config files that currently
have the mps(4) driver.
sys/ia64/conf/GENERIC:
Add the mps(4) and mpr(4) drivers to the ia64 GENERIC
config file.
sys/i386/conf/XEN:
Exclude the mpr module from building here.
Submitted by: Steve McConnell <Stephen.McConnell@lsi.com>
MFC after: 3 days
Tested by: Chris Reeves <chrisr@spectralogic.com>
Sponsored by: LSI, Spectra Logic
Relnotes: LSI 12Gb SAS driver mpr(4) added
kernel config file. If you also want to have a static DTB compiled
into your kernel, however, it cannot be a list. We have no mechanism
in the kernel for picking one, so that doesn't make sense and will
result in a compile-time error.
systems need fine-grained control over what's in and what's out.
That's ideal. For now, separate GPT labels from the rest and allow
g_label to be built with just GPT labels.
Obtained from: Juniper Networks, Inc.
My PCI RID changes somehow got intermixed with my PCI ARI patch when I
committed it. I may have accidentally applied a patch to a non-clean
working tree. Revert everything while I figure out what went wrong.
Pointy hat to: rstone
my tests, it is faster ~20%, even on an old IXP425 533MHz it is ~45%
faster... This is partly due to loop unrolling, so the code size does
significantly increase... I do plan on committing a version that
rolls up the loops again for smaller code size for embedded systems
where size is more important than absolute performance (it'll save ~6k
code)...
The kernel implementation is now shared w/ userland's libcrypt and
libmd...
We drop support for sha256 from sha2.c, so now sha2.c only contains
sha384 and sha512...
Reviewed by: secteam@
linking NIC Receive Side Scaling (RSS) to the network stack's
connection-group implementation. This prototype (and derived patches)
are in use at Juniper and several other FreeBSD-using companies, so
despite some reservations about its maturity, merge the patch to the
base tree so that it can be iteratively refined in collaboration rather
than maintained as a set of gradually diverging patch sets.
(1) Merge a software implementation of the Toeplitz hash specified in
RSS implemented by David Malone. This is used to allow suitable
pcbgroup placement of connections before the first packet is
received from the NIC. Software hashing is generally avoided,
however, due to high cost of the hash on general-purpose CPUs.
(2) In in_rss.c, maintain authoritative versions of RSS state intended
to be pushed to each NIC, including keying material, hash
algorithm/ configuration, and buckets. Provide software-facing
interfaces to hash 2- and 4-tuples for IPv4 and IPv6 using both
the RSS standardised Toeplitz and a 'naive' variation with a hash
efficient in software but with poor distribution properties.
Implement rss_m2cpuid()to be used by netisr and other load
balancing code to look up the CPU on which an mbuf should be
processed.
(3) In the Ethernet link layer, allow netisr distribution using RSS as
a source of policy as an alternative to source ordering; continue
to default to direct dispatch (i.e., don't try and requeue packets
for processing on the 'right' CPU if they arrive in a directly
dispatchable context).
(4) Allow RSS to control tuning of connection groups in order to align
groups with RSS buckets. If a packet arrives on a protocol using
connection groups, and contains a suitable hardware-generated
hash, use that hash value to select the connection group for pcb
lookup for both IPv4 and IPv6. If no hardware-generated Toeplitz
hash is available, we fall back on regular PCB lookup risking
contention rather than pay the cost of Toeplitz in software --
this is a less scalable but, at my last measurement, faster
approach. As core counts go up, we may want to revise this
strategy despite CPU overhead.
Where device drivers suitably configure NICs, and connection groups /
RSS are enabled, this should avoid both lock and line contention during
connection lookup for TCP. This commit does not modify any device
drivers to tune device RSS configuration to the global RSS
configuration; patches are in circulation to do this for at least
Chelsio T3 and Intel 1G/10G drivers. Currently, the KPI for device
drivers is not particularly robust, nor aware of more advanced features
such as runtime reconfiguration/rebalancing. This will hopefully prove
a useful starting point for refinement.
No MFC is scheduled as we will first want to nail down a more mature
and maintainable KPI/KBI for device drivers.
Sponsored by: Juniper Networks (original work)
Sponsored by: EMC/Isilon (patch update and merge)
AppleTalk was a network transport protocol for Apple Macintosh devices
in 80s and then 90s. Starting with Mac OS X in 2000 the AppleTalk was
a legacy protocol and primary networking protocol is TCP/IP. The last
Mac OS X release to support AppleTalk happened in 2009. The same year
routing equipment vendors (namely Cisco) end their support.
Thus, AppleTalk won't be supported in FreeBSD 11.0-RELEASE.
IPX was a network transport protocol in Novell's NetWare network operating
system from late 80s and then 90s. The NetWare itself switched to TCP/IP
as default transport in 1998. Later, in this century the Novell Open
Enterprise Server became successor of Novell NetWare. The last release
that claimed to still support IPX was OES 2 in 2007. Routing equipment
vendors (e.g. Cisco) discontinued support for IPX in 2011.
Thus, IPX won't be supported in FreeBSD 11.0-RELEASE.
This adds and enables the PV console used on XEN kernels to
GENERIC/XENHVM kernels in order for it to be used on PVH.
Approved by: gibbs
Sponsored by: Citrix Systems R&D
dev/xen/console/console.c:
- Define console_page.
- Move xc_printf debug function from i386 XEN code to generic console
code.
- Rework xc_printf.
- Use xen_initial_domain instead of open-coded checks for Dom0.
- Gate the attach of the PV console to PV(H) guests.
dev/xen/console/xencons_ring.c:
- Allow the PV Xen console to output earlier by directly signaling
the event channel in start_info if the event channel is not yet
initialized.
- Use HYPERVISOR_start_info instead of xen_start_info.
i386/include/xen/xen-os.h:
- Remove prototype for xc_printf since it's now declared in global
xen-os.h
i386/xen/xen_machdep.c:
- Remove previous version of xc_printf.
- Remove definition of console_page (now it's defined in the console
itself).
- Fix some printf formatting errors.
x86/xen/pv.c:
- Add some early boot debug messages using xc_printf.
- Set console_page based on the value passed in start_info.
xen/xen-os.h:
- Declare console_page and add prototype for xc_printf.
(1) Invoke cpp to bring in files via #include (although the old
/include/ stuff is supported still).
(2) bring in files from either vendor tree or freebsd-custom files
when building.
(3) move all dts* files from sys/boot/fdt/dts to
sys/boot/fdt/dts/${MACHINE} as appropriate.
(4) encode all the magic to do the build in sys/tools/fdt/make_dtb.sh
so that the different places in the tree use the exact same logic.
(5) switch back to gpl dtc by default. the bsdl one in the tree has
significant issues not easily addressed by those unfamiliar with
the code.
This is (almost!) enough to actually probe, attach, configure a default
port group and do some basic work. It's also totally hard-coded for
the Qualcomm Atheros DB120 board - it doesn't yet have any of the code
from OpenWRT which parses extra configuration data to know how to program
the switch. The LED stuff is also missing.
But, it's enough to facilitate board, PHY, switch and VLAN bringup,
so I am committing it now.
Tested:
* Qualcomm Atheros DB120
Obtained from: OpenWRT
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days