* A function device_printf() to make pretty-printing driver messages easier.
* A function device_get_children() to query the children of a device.
* Generic implementations of BUS_ALLOC_RESOURCE and BUS_RELEASE_RESOURCE.
* Change bus_generic_print_child() so that it is actually useful.
It was nay'ed before committing on the grounds that this is not
the way to do it, and has been decided as such several times in
the past.
There is not point in loading gobs of ascii into the kernel when
the only use of that ascii is presentation to the user.
Next thing we'd be adding all section 4 man pages to the loaded
kernel as well.
The argument about KLD's is bogus, klds can store a file in
/usr/share/doc/sysctl/dev/foo/thisvar.txt with a description and
sysctl or other facilities can pick it up there.
Proper documentation will take several K worth of text for many
sysctl variables, we don't want that in the kernel under any
circumstances.
I will welcome any well thought out attempt at improving the
situation wrt. sysctl documentation, but this wasn't it.
shared signal handling when there is shared signal handling being
used.
This removes the main objection to making the shared signal handling
a standard ability in rfork() and friends and 'unconditionalising'
this code. (i.e. the allocation of an extra 328 bytes per process).
Signal handling information remains in the U area until such a time as
it's reference count would be incremented to > 1. At that point a new
struct is malloc'd and maintained in KVM so that it can be shared between
the processes (threads) using it.
A function to check the reference count and move the struct back to the U
area when it drops back to 1 is also supplied. Signal information is
therefore now swapable for all processes that are not sharing that
information with other processes. THis should addres the concerns raised
by Garrett and others.
Submitted by: "Richard Seaman, Jr." <dick@tar.com>
from sc, vt and sio drivers. Use instead a linker_set to collect them.
Staticize ??cngetc(), ??cnputc(), etc functions in sc and vt drivers.
We must still have siocngetc() and siocnputc() as globals because they
are directly referred to by i386-gdbstub.c :-(
Oked by: bde
downward growing stacks more general.
Add (but don't activate) code to use the new stack facility
when running threads, (specifically the linux threads support).
This allows people to use both linux compiled linuxthreads, and also the
native FreeBSD linux-threads port.
The code is conditional on VM_STACK. Not using this will
produce the old heavily tested system.
Submitted by: Richard Seaman <dick@tar.com>
* Move the user stack from VM_MAXUSER_ADDRESS to a place below the 32bit
boundary (needed to support 32bit OSF programs). This should also save
one pagetable per process.
* Add cvtqlsv to the set of instructions handled by the floating point
software completion code.
* Disable all floating point exceptions by default.
* A minor change to execve to allow the OSF1 image activator to support
dynamic loading.
There's something that's been bugging me for a while, so I decided to fix it.
FreeBSD now will DTRT WRT DDB and DDB_UNATTENDED (!debugger_on_panic), at least
in my opinion. The behavior change is such that:
1. Nothing changes when debugger_on_panic != 0.
2. When DDB_UNATTENDED (!debugger_on_panic), if a panic occurs, the
machine will reboot. Also, if a trap occurs, the machine will
panic and reboot, unlike how it broke to DDB before. HOWEVER,
a trap inside DDB will not cause a panic, allowing full use
of DDB without having to worry about the machine being stuck
at a DDB prompt if something goes wrong during the day.
Patches for this behavior follow my signature, and it would
be a boon to anyone (like me) who uses DDB_UNATTENDED, but
actually wants the machine to panic on a trap (otherwise,
what's the use, if the machine causes a fatal trap rather than
a true panic, of debugger_on_panic?). The changes cause no
adverse behavior, but do involve two symbols becoming global
Submitted by: Brian Feldman <green@unixhelp.org>
last cleanup. Since the oid_arg2 field of struct sysctl_oid is not wide
enough to hold a long, the SYSCTL_LONG() macro has been modified to only
support exporting long variables by pointer instead of by value.
Reviewed by: bde
merge). This fixes at least hanging in revoke(2) when a somewhat
active slave pty is revoked. The hang made the window for the
null pointer bug in ufsspec_{read,write} much larger.
There are many other bugs in this area (revoke of an active fifo
at best leaks memory...).
object are not page aligned). This should fix the mount_msdos panic after a
failed attemp to mount as ffs.
Reviewed By: Matthew Dillon <dillon@apollo.backplane.com>
Archie Cobbs <archie@whistle.com>
Dmitrij Tejblum <dima@tejblum.dnttm.rssi.ru>
there does not seem to be a problem with this.
PR: kern/8732
Analysis by: David G Andersen <danderse@cs.utah.edu>
Tested by: Alfred Perlstein <bright@hotjobs.com>
Submitted by: "Richard Seaman, Jr." <lists@tar.com>
Obtained from: linux :-)
Code to allow Linux Threads to run under FreeBSD.
By default not enabled
This code is dependent on the conditional
COMPAT_LINUX_THREADS (suggested by Garret)
This is not yet a 'real' option but will be within some number of hours.
adjusted related casts to match (only in the kernel in this commit).
The pointer was only wanted in one place in kern_exec.c. Applications
should use the kern.ps_strings sysctl instead of PS_STRINGS, so they
shouldn't notice this change.
across the kernel -> application interface, and for the one sysctl where
they were passed and actually used (kern.ps_strings), the applications
want addresses represented as u_longs anyway (the other sysctl that
passed them, kern.usrstack, has never been used).
Agreed to by: dfr, phk
Obtained from: Stephen Clawson <sclawson@cs.utah.edu>
Wakeup anyone waiting on a mount point prior to returning from umount,
whether an error occurs or not. Fixes a stat/NFS-umount race and other
potential future problems. Fix taken from bug/pr which also indicated
that the same fix has already been applied to OpenBSD and NetBSD.
This is odd, especially in the case of USB where the driver is found
in several tries: vendor specific, class specific, interface specific.
The mouse driver is found at the interface specific level...
Reviewed by: Doug Rabson (dfr@freebsd.org)
0. This makes it difficult to do efficient manipulation of the
struct pollfd since you can't leave a slot empty.
PR: 8599
Submitted-by: Marc Slemko <marcs@znep.com>