interface. Make MII drivers forget about 'struct ifnet'.
Later plan is to provide an administrative downcall from ifnet
layer into drivers, to inform them about administrative status
change. If someone thinks that processing MII events for an
administratively down interface is a big problem, then drivers
would turn MII processing off.
The following MII drivers do evil things, like strcmp() on
driver name, so they still need knowledge of ifnet and thus
include if_var.h. They all need to be fixed:
sys/dev/mii/brgphy.c
sys/dev/mii/e1000phy.c
sys/dev/mii/ip1000phy.c
sys/dev/mii/jmphy.c
sys/dev/mii/nsphy.c
sys/dev/mii/rgephy.c
sys/dev/mii/truephy.c
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
it might provide useful for debugging). For most mii(4) drivers it
was unclear whether the PHYs driven by them actually support
loopback or not. Moreover, typically loopback mode also needs to
be activated on the MAC, which none of the Ethernet drivers using
mii(4) implements. Given that loopback media has no real use (and
obviously hardly had a chance to actually work) besides for driver
development (which just loopback mode should be sufficient for
though, i.e one doesn't necessary need support for loopback media)
support for it is just dropped as both NetBSD and OpenBSD already
did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
instead of discrete function pointers, and extend this to include
a "reset" entry point. Make sure any PHY-specific reset routine is
always used, and provide one for lxtphy(4) which disables MII
interrupts (as is done for a few other PHYs we have drivers for).
This includes changing NIC drivers which previously just called the
generic mii_phy_reset() to now actually call the PHY-specific reset
routine, which might be crucial in some cases. While at it, the
redundant checks in these NIC drivers for mii->mii_instance not being
zero before calling the reset routines were removed because as soon
as one PHY driver attaches mii->mii_instance is incremented and we
hardly can end up in their media change callbacks etc if no PHY driver
has attached as mii_attach() would have failed in that case and not
attach a miibus(4) instance.
Consequently, NIC drivers now no longer should call mii_phy_reset()
directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
The purpose of that function is to perform the common steps to attach
a PHY driver instance and to hook it up to the miibus(4) instance and to
optionally also handle the probing, addition and initialization of the
supported media. So all a PHY driver without any special requirements
has to do in its bus attach method is to call mii_phy_dev_attach()
along with PHY-specific MIIF_* flags, a pointer to its PHY functions
and the add_media set to one. All PHY drivers were updated to take
advantage of mii_phy_dev_attach() as appropriate. Along with these
changes the capability mask was added to the mii_softc structure so
PHY drivers taking advantage of mii_phy_dev_attach() but still
handling media on their own do not need to fiddle with the MII attach
arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
structure. Several PHY drivers require this information also after
attaching and previously had to wrap their own softc around mii_softc.
NetBSD/OpenBSD also keep track of the model and revision on their
mii_softc structure. All PHY drivers were updated to take advantage
as appropriate.
- Convert the mebers of the MII data structure to unsigned where
appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
when mapping an OUI to the MII ID registers. All PHY drivers and
miidevs where changed as necessary. Actually this now again allows to
largely share miidevs with NetBSD, which fixed this problem already
9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
weren't explicitly converted to support flow control before. It's
unclear whether flow control actually works with these but typically
it should and their net behavior should be more correct with these
changes in place than without if the MAC driver sets MIIF_DOPAUSE.
Obtained from: NetBSD (partially)
Reviewed by: yongari (earlier version), silence on arch@ and net@
exact model name is not clear yet. All previous RTL8201 10/100 PHYs
used 0x8201 in MII_PHYIDR2 which in turn makes model number 0x20
but this PHY used new model number 0x08.
the NIC drivers as well as the PHY drivers to take advantage of the
mii_attach() introduced in r213878 to get rid of certain hacks. For
the most part these were:
- Artificially limiting miibus_{read,write}reg methods to certain PHY
addresses; we now let mii_attach() only probe the PHY at the desired
address(es) instead.
- PHY drivers setting MIIF_* flags based on the NIC driver they hang
off from, partly even based on grabbing and using the softc of the
parent; we now pass these flags down from the NIC to the PHY drivers
via mii_attach(). This got us rid of all such hacks except those of
brgphy() in combination with bce(4) and bge(4), which is way beyond
what can be expressed with simple flags.
While at it, I took the opportunity to change the NIC drivers to pass
up the error returned by mii_attach() (previously by mii_phy_probe())
and unify the error message used in this case where and as appropriate
as mii_attach() actually can fail for a number of reasons, not just
because of no PHY(s) being present at the expected address(es).
Reviewed by: jhb, yongari
different PHY instance being selected and isolation out into the wrappers
around the service methods rather than duplicating them over and over
again (besides, a PHY driver shouldn't need to care about which instance
it actually is).
- Centralize the check for the need to isolate a non-zero PHY instance not
supporting isolation in mii_mediachg() and just ignore it rather than
panicing, which should sufficient given that a) things are likely to
just work anyway if one doesn't plug in more than one port at a time and
b) refusing to attach in this case just leaves us in a unknown but most
likely also not exactly correct configuration (besides several drivers
setting MIIF_NOISOLATE didn't care about these anyway, probably due to
setting this flag for no real reason).
- Minor fixes like removing unnecessary setting of sc->mii_anegticks,
using sc->mii_anegticks instead of hardcoded values etc.
priorities of the technologies supported by 802.3 Selector Field
value.
1000BASE-T full duplex
1000BASE-T
100BASE-T2 full duplex
100BASE-TX full duplex
100BASE-T2
100BASE-T4
100BASE-TX
10BASE-T full duplex
10BAST-T
However PHY drivers didn't honor the order such that 100BASE-T4 had
higher priority than 100BASE-TX full duplex. Fix that long standing
bugs such that have PHY drivers choose the highest common denominator
ability.
Fix a bug in dcphy which inadvertently aceepts 100BASE-T4.
PR: 92599
Bugfix for the Realtek PHY driver... an RTL8201L standalone PHY
needs different handling than the integrated ones in terms of
speed detection. There was a bogus test based on the parent
device driver name string controlling which speed register to
query. That test began failing when the rl driver was split into
separate rl and re drivers some time ago. Apparently nobody ever
noticed because the buggy code only executes if NWAY negotiation
failed. Since we happen to be testing with an ancient dumb hub
rather than a modern switch, we found it.
To fix it all, have the attach() routine notice whether we're
dealing with an integrated PHY or an RTL8201L and store that info
in a struct accessible to the status() routine that needs to know
which register to query.
I touched up the fixes because they were relative to RELENG_6 and to
bring a few nits into line with style(9).
MFC After: 2 weeks
Submitted by: Ian Lepore
indices when manually adding media. Some of these I've missed while
converting drivers to take advantage of said fuctions recently,
others where longstanding bugs.
mii_phy_match() API and takes care of the PHY device probe based on
the struct mii_phydesc array and the match return value provided.
Convert PHY drivers to take advantage of mii_phy_dev_probe(),
converting drivers to provide a mii_phydesc table in the first
place where necessary.
Reviewed by: yongari
MFC after: 2 weeks
the currently selected media is of type IFM_AUTO as auto-negotiation
doesn't need to be kicked anyway.
- In rlphy_status() just use if_dname instead of determining the name
of the parent NIC via device_get_name(device_get_parent(sc->mii_dev)).
- Use mii_phy_add_media() instead of mii_add_media() so the latter can
be eventually retired.
- Take advantage of mii_phy_setmedia().
- Fix some whitespace nits and remove commented out code that just can't
be used with RealTek PHYs.
MFC after: 2 weeks
rl(4) driver and put it in a new re(4) driver. The re(4) driver shares
the if_rlreg.h file with rl(4) but is a separate module. (Ultimately
I may change this. For now, it's convenient.)
rl(4) has been modified so that it will never attach to an 8139C+
chip, leaving it to re(4) instead. Only re(4) has the PCI IDs to
match the 8169/8169S/8110S gigE chips. if_re.c contains the same
basic code that was originally bolted onto if_rl.c, with the
following updates:
- Added support for jumbo frames. Currently, there seems to be
a limit of approximately 6200 bytes for jumbo frames on transmit.
(This was determined via experimentation.) The 8169S/8110S chips
apparently are limited to 7.5K frames on transmit. This may require
some more work, though the framework to handle jumbo frames on RX
is in place: the re_rxeof() routine will gather up frames than span
multiple 2K clusters into a single mbuf list.
- Fixed bug in re_txeof(): if we reap some of the TX buffers,
but there are still some pending, re-arm the timer before exiting
re_txeof() so that another timeout interrupt will be generated, just
in case re_start() doesn't do it for us.
- Handle the 'link state changed' interrupt
- Fix a detach bug. If re(4) is loaded as a module, and you do
tcpdump -i re0, then you do 'kldunload if_re,' the system will
panic after a few seconds. This happens because ether_ifdetach()
ends up calling the BPF detach code, which notices the interface
is in promiscuous mode and tries to switch promisc mode off while
detaching the BPF listner. This ultimately results in a call
to re_ioctl() (due to SIOCSIFFLAGS), which in turn calls re_init()
to handle the IFF_PROMISC flag change. Unfortunately, calling re_init()
here turns the chip back on and restarts the 1-second timeout loop
that drives re_tick(). By the time the timeout fires, if_re.ko
has been unloaded, which results in a call to invalid code and
blows up the system.
To fix this, I cleared the IFF_UP flag before calling ether_ifdetach(),
which stops the ioctl routine from trying to reset the chip.
- Modified comments in re_rxeof() relating to the difference in
RX descriptor status bit layout between the 8139C+ and the gigE
chips. The layout is different because the frame length field
was expanded from 12 bits to 13, and they got rid of one of the
status bits to make room.
- Add diagnostic code (re_diag()) to test for the case where a user
has installed a broken 32-bit 8169 PCI NIC in a 64-bit slot. Some
NICs have the REQ64# and ACK64# lines connected even though the
board is 32-bit only (in this case, they should be pulled high).
This fools the chip into doing 64-bit DMA transfers even though
there is no 64-bit data path. To detect this, re_diag() puts the
chip into digital loopback mode and sets the receiver to promiscuous
mode, then initiates a single 64-byte packet transmission. The
frame is echoed back to the host, and if the frame contents are
intact, we know DMA is working correctly, otherwise we complain
loudly on the console and abort the device attach. (At the moment,
I don't know of any way to work around the problem other than
physically modifying the board, so until/unless I can think of a
software workaround, this will have do to.)
- Created re(4) man page
- Modified rlphy.c to allow re(4) to attach as well as rl(4).
Note that this code works for the sample 8169/Marvell 88E1000 NIC
that I have, but probably won't work for the 8169S/8110S chips.
RealTek has sent me some sample NICs, but they haven't arrived yet.
I will probably need to add an rlgphy driver to handle the on-board
PHY in the 8169S/8110S (it needs special DSP initialization).
Rename mii_phy_auto_stop() mii_phy_down().
Introduce mii_down(), use it from nge. Do not indirect it to 19 identical
case's in 19 switchstatements like NetBSD did.
doesn't support NWAY, the RealTek PHY (both the integrated ones on 8139
chips and the RTL8201L 10/100 PHY) will not report the link speed via
the ANLPAR or BMSR registers. For the 8201L, we need to look in magic
vendor-specific PHY register 0x19. For the 8139 MAC+PHY combo, we have
to be able to test the RL_MEDIASTAT register.
The changes to rlphy.c are based largely on the patch from PR 30836,
however I tried to eliminate some magic numbers by creating an entry
for the 8201 PHY in miidevs.
Also updated if_rl.c to allow the rlphy driver to read the RL_MEDIASTAT
register via the rl_miibus_readreg() routine.
. Make internal service routines static.
. Use a consistent ordering of checks in MII_TICK. Do the work in the
mii_phy_tick() subroutine if appropriate.
. Call mii_phy_update() to trigger the callbacks.