Waiting for 1ms for each GMII register access looks overkill and it
may also decrease overall performance of driver because re(4)
invokes mii_tick for every hz.
Tested by: rpaulo
established a valid link or not. In miibus_statchg handler add a
check for established link is valid one for the controller(e.g.
1000baseT is not a valid link for fastethernet controllers.)
o Added a flag RE_FLAG_FASTETHER to mark fastethernet controllers.
o Added additional check to know whether we've really encountered
watchdog timeouts or missed Tx completion interrupts. This change
may help to track down the cause of watchdog timeouts.
o In interrupt handler, removed a check for link state change
interrupt. Not all controllers have the bit and re(4) did not
rely on the event for a long time. In addition, re(4) didn't
request the interrupt in RL_IMR register.
Tested by: rpaulo
drivers, there should be a 1us delay after every write when
bit-banging the MII. Also insert barriers in order to ensure
the intended ordering. These changes hopefully will solve the
bus wedging occasionally experienced with DM9102A since r182461.
- Deobfuscate dc_mii_readreg() a bit.
multiple algorithms and potentially collect multiple samples.
Instead of a single calibration interval we now have short and long
intervals; the long interval roughly corresponds to the previous
single interval. The short interval is used to speedup collection
of samples and happens much quicker. We make calls using the short
interval until we're told the calibration work is complete at which
point we fallback to the long interval. In addition there is a
much longer reset interval used to flush all calibration state and
cause everthing to start anew.
With these changes you can also disable calibration entirely by
setting the long interval to zero.
at. I don't think this will make a huge difference, but I have
received a report of a interrupt storm on one 16-bit card that this
might fix (chances are it won't, since I think that we may need to
check both the CBB registers for the 16-bit card as well as the PCIC
registers for power state change).
Submitted by: jhb@
the power interrupt and init code waiting for the interrupt are
running on different CPUs. I haven't seen this make any real
difference, but I've also had some reports of odd behavior I can't
otherwise explain. It is an infrequent operation, and certainly
wouldn't hurt.
my right mouse button and keyboard LEDs from working due to mangled
configuration packets. Fixed several other races and associated problems in the
main ADB stack that were exposed while fixing this.
Now it is possible to suspend/resume with inserted and active card.
To reinitialize card on resume and to detect card change while suspended,
implement bus rescan routines. It can also be used by controllers without
card presence detection signals or with multiple cards per slot support.
While there, cleanup msleep() usage. We have no any rights to exit without
"request done" signal from driver as it could lead to modify after free.
interrupt code to be more robust. I've been running these changes for
over a year... With these changes, I don't see the ath card going
into reset like the code in the tree.
packet loss, of between 10-30%. The fix is to put the PHY into
and take it out of local loopback mode when resetting the interface.
Obtained from: Chelsio Inc.
MFC after: 3 days
o Chip full mask revision 2 or later controllers have to
set correct Tx MAC and Tx offload clock depending on negotiated
link speed.
o JMC260 chip full mask revision 2 has a silicon bug that can't
handle 64bit DMA addressing. Add workaround to the bug by
limiting DMA address space to be within 32bit.
o Valid FIFO space of receive control and status register was
changed on chip full mask revision 2 or later controllers. For
these controllers, use default 16QW as it's supposed to be the
safest value for maximum PCIe compatibility. JMicron confirmed
performance will not be reduced even if the FIFO space is set
to 16QW.
o When interface is put into suspend/shutdown state, remove Tx MAC
and Tx offload clock to save more power. We don't need Tx clock
at all in this state.
o Added new register definition for chip full mask revision 2 or
later controllers.
Thanks to JMicron for their continuous support of FreeBSD.
change. As a side effect, this makes the excessive interrupts to
disappear which has been observed as a regression in recent stable/7.
Reported by: many (on -stable@)
Reviewed by: davidch
directly include only the header files needed. This reduces the
unneeded spamming of various headers into lots of files.
For now, this leaves us with very few modules including vnet.h
and thus needing to depend on opt_route.h.
Reviewed by: brooks, gnn, des, zec, imp
Sponsored by: The FreeBSD Foundation
when it sees only received packets. In some cases where a device only
recieves data it mistakenly thinks that its transmitting side is broken
and resets the device.
Obtained from: Chelsio Inc.
MFC after: 3 days
hardware for PMCs that have been configured for sampling.
- Bug fix: acknowledge PMC hardware overflows irrespective of the
the (software) PMC's state.
- break complex conditionals in to multiple lines to avoid wrapping
- remove copious unused debug statements
- be more aggressive about cleaning in the calling thread
- eliminate usage of ENOSPC
- increase number of iterations that cxgbsp can do
- eliminate "initerr" usage to simplify ENOBUFS handling
- when coalescing pass all packets to BPF
- always set overrun if hardware queue is full
offload for VLAN frames are also supported. The VLAN hardware
assistance is available only on 82550/82551 based controllers.
While I'm here change the confusing name of bit1 in byte 22 of
configuration block to vlan_drop_en. The bit controls whether
hardware strips VLAN tagged frame or not. Special thanks to wpaul
who sent valuable VLAN related information to me.
Tested on: i386, sparc64
events. Just reading PMDR register was not enough to have fxp(4)
immuninize against received magic packets during system boot.
Tested by: Alexey Shuvaev < shuvaev <> physik DOT uni-wuerzburg DOT de >
module; the ath module now brings in the hal support. Kernel
config files are almost backwards compatible; supplying
device ath_hal
gives you the same chip support that the binary hal did but you
must also include
options AH_SUPPORT_AR5416
to enable the extended format descriptors used by 11n parts.
It is now possible to control the chip support included in a
build by specifying exactly which chips are to be supported
in the config file; consult ath_hal(4) for information.