This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
from Mac OS X Leopard--rationalize naming for entry points to
the following general forms:
mac_<object>_<method/action>
mac_<object>_check_<method/action>
The previous naming scheme was inconsistent and mostly
reversed from the new scheme. Also, make object types more
consistent and remove spaces from object types that contain
multiple parts ("posix_sem" -> "posixsem") to make mechanical
parsing easier. Introduce a new "netinet" object type for
certain IPv4/IPv6-related methods. Also simplify, slightly,
some entry point names.
All MAC policy modules will need to be recompiled, and modules
not updates as part of this commit will need to be modified to
conform to the new KPI.
Sponsored by: SPARTA (original patches against Mac OS X)
Obtained from: TrustedBSD Project, Apple Computer
route and once they are done with it, call rtfree(). rtfree() should
only be used when we are certain we hold the last reference to the
route. This bug results in console messages like the following:
rtfree: 0xc40f7000 has 1 refs
This patch switches the rtfree() to use RTFREE_LOCKED() instead,
which should handle the reference counting on the route better.
Approved by: re@ (gnn)
Reviewed by: bms
Reported by: many via net@ and current@
Tested by: many
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
were unused or already in if_var.h so add if_name() to if_var.h and
remove net_osdep.h along with all references to it.
Longer term we may want to kill off if_name() entierly since all modern
BSDs have if_xname variables rendering it unnecessicary.
parameter that can specify configuration parameters:
o rev cloner api's to add optional parameter block
o add SIOCCREATE2 that accepts parameter data
o rev vlan support to use new api (maintain old code)
Reviewed by: arch@
except in places dealing with ifaddr creation or destruction; and
in such special places incomplete ifaddrs should never be linked
to system-wide data structures. Therefore we can eliminate all the
superfluous checks for "ifa->ifa_addr != NULL" and get ready
to the system crashing honestly instead of masking possible bugs.
Suggested by: glebius, jhb, ru
(1) bpf peer attaches to interface netif0
(2) Packet is received by netif0
(3) ifp->if_bpf pointer is checked and handed off to bpf
(4) bpf peer detaches from netif0 resulting in ifp->if_bpf being
initialized to NULL.
(5) ifp->if_bpf is dereferenced by bpf machinery
(6) Kaboom
This race condition likely explains the various different kernel panics
reported around sending SIGINT to tcpdump or dhclient processes. But really
this race can result in kernel panics anywhere you have frequent bpf attach
and detach operations with high packet per second load.
Summary of changes:
- Remove the bpf interface's "driverp" member
- When we attach bpf interfaces, we now set the ifp->if_bpf member to the
bpf interface structure. Once this is done, ifp->if_bpf should never be
NULL. [1]
- Introduce bpf_peers_present function, an inline operation which will do
a lockless read bpf peer list associated with the interface. It should
be noted that the bpf code will pickup the bpf_interface lock before adding
or removing bpf peers. This should serialize the access to the bpf descriptor
list, removing the race.
- Expose the bpf_if structure in bpf.h so that the bpf_peers_present function
can use it. This also removes the struct bpf_if; hack that was there.
- Adjust all consumers of the raw if_bpf structure to use bpf_peers_present
Now what happens is:
(1) Packet is received by netif0
(2) Check to see if bpf descriptor list is empty
(3) Pickup the bpf interface lock
(4) Hand packet off to process
From the attach/detach side:
(1) Pickup the bpf interface lock
(2) Add/remove from bpf descriptor list
Now that we are storing the bpf interface structure with the ifnet, there is
is no need to walk the bpf interface list to locate the correct bpf interface.
We now simply look up the interface, and initialize the pointer. This has a
nice side effect of changing a bpf interface attach operation from O(N) (where
N is the number of bpf interfaces), to O(1).
[1] From now on, we can no longer check ifp->if_bpf to tell us whether or
not we have any bpf peers that might be interested in receiving packets.
In collaboration with: sam@
MFC after: 1 month
softc lists and associated mutex are now unused so these have been removed.
Calling if_clone_detach() will now destroy all the cloned interfaces for the
driver and in most cases is all thats needed to unload.
Idea by: brooks
Reviewed by: brooks
cloner. This ensures that ifc->ifc_units is not prematurely freed in
if_clone_detach() before the clones are destroyed, resulting in memory modified
after free. This could be triggered with if_vlan.
Assert that all cloners have been destroyed when freeing the memory.
Change all simple cloners to destroy their clones with ifc_simple_destroy() on
module unload so the reference count is properly updated. This also cleans up
the interface destroy routines and allows future optimisation.
Discussed with: brooks, pjd, -current
Reviewed by: brooks
a DLT_NULL interface. In particular:
1) Consistently use type u_int32_t for the header of a
DLT_NULL device - it continues to represent the address
family as always.
2) In the DLT_NULL case get bpf_movein to store the u_int32_t
in a sockaddr rather than in the mbuf, to be consistent
with all the DLT types.
3) Consequently fix a bug in bpf_movein/bpfwrite which
only permitted packets up to 4 bytes less than the MTU
to be written.
4) Fix all DLT_NULL devices to have the code required to
allow writing to their bpf devices.
5) Move the code to allow writing to if_lo from if_simloop
to looutput, because it only applies to DLT_NULL devices
but was being applied to other devices that use if_simloop
possibly incorrectly.
PR: 82157
Submitted by: Matthew Luckie <mjl@luckie.org.nz>
Approved by: re (scottl)
struct ifnet or the layer 2 common structure it was embedded in have
been replaced with a struct ifnet pointer to be filled by a call to the
new function, if_alloc(). The layer 2 common structure is also allocated
via if_alloc() based on the interface type. It is hung off the new
struct ifnet member, if_l2com.
This change removes the size of these structures from the kernel ABI and
will allow us to better manage them as interfaces come and go.
Other changes of note:
- Struct arpcom is no longer referenced in normal interface code.
Instead the Ethernet address is accessed via the IFP2ENADDR() macro.
To enforce this ac_enaddr has been renamed to _ac_enaddr.
- The second argument to ether_ifattach is now always the mac address
from driver private storage rather than sometimes being ac_enaddr.
Reviewed by: sobomax, sam
for unknown events.
A number of modules return EINVAL in this instance, and I have left
those alone for now and instead taught MOD_QUIESCE to accept this
as "didn't do anything".
- Split the code out into if_clone.[ch].
- Locked struct if_clone. [1]
- Add a per-cloner match function rather then simply matching names of
the form <name><unit> and <name>.
- Use the match function to allow creation of <interface>.<tag>
vlan interfaces. The old way is preserved unchanged!
- Also the match function to allow creation of stf(4) interfaces named
stf0, stf, or 6to4. This is the only major user visible change in
that "ifconfig stf" creates the interface stf rather then stf0 and
does not print "stf0" to stdout.
- Allow destroy functions to fail so they can refuse to delete
interfaces. Currently, we forbid the deletion of interfaces which
were created in the init function, particularly lo0, pflog0, and
pfsync0. In the case of lo0 this was a panic implementation so it
does not count as a user visiable change. :-)
- Since most interfaces do not need the new functionality, an family of
wrapper functions, ifc_simple_*(), were created to wrap old style
cloner functions.
- The IF_CLONE_INITIALIZER macro is replaced with a new incompatible
IFC_CLONE_INITIALIZER and ifc_simple consumers use IFC_SIMPLE_DECLARE
instead.
Submitted by: Maurycy Pawlowski-Wieronski <maurycy at fouk.org> [1]
Reviewed by: andre, mlaier
Discussed on: net
stf_destroy() to handle the common softc destruction path for the
two destruction sources: interface cloning destroy, and module
unload.
NOTE: sc_ro, the cached route for stf conversion, is not synchronized
against concurrent access in this change, that will follow in a future
change.
Reviewed by: pjd
a new bpf_mtap2 routine that does the right thing for an mbuf
and a variable-length chunk of data that should be prepended.
o while we're sweeping the drivers, use u_int32_t uniformly when
when prepending the address family (several places were assuming
sizeof(int) was 4)
o return M_ASSERTVALID to BPF_MTAP* now that all stack-allocated
mbufs have been eliminated; this may better be moved to the bpf
routines
Reviewed by: arch@ and several others
if_xname, if_dname, and if_dunit. if_xname is the name of the interface
and if_dname/unit are the driver name and instance.
This change paves the way for interface renaming and enhanced pseudo
device creation and configuration symantics.
Approved By: re (in principle)
Reviewed By: njl, imp
Tested On: i386, amd64, sparc64
Obtained From: NetBSD (if_xname)
that covers updates to the contents. Note this is separate from holding
a reference and/or locking the routing table itself.
Other/related changes:
o rtredirect loses the final parameter by which an rtentry reference
may be returned; this was never used and added unwarranted complexity
for locking.
o minor style cleanups to routing code (e.g. ansi-fy function decls)
o remove the logic to bump the refcnt on the parent of cloned routes,
we assume the parent will remain as long as the clone; doing this avoids
a circularity in locking during delete
o convert some timeouts to MPSAFE callouts
Notes:
1. rt_mtx in struct rtentry is guarded by #ifdef _KERNEL as user-level
applications cannot/do-no know about mutex's. Doing this requires
that the mutex be the last element in the structure. A better solution
is to introduce an externalized version of struct rtentry but this is
a major task because of the intertwining of rtentry and other data
structures that are visible to user applications.
2. There are known LOR's that are expected to go away with forthcoming
work to eliminate many held references. If not these will be resolved
prior to release.
3. ATM changes are untested.
Sponsored by: FreeBSD Foundation
Obtained from: BSD/OS (partly)
drain routines are done by swi_net, which allows for better queue control
at some future point. Packets may also be directly dispatched to a netisr
instead of queued, this may be of interest at some installations, but
currently defaults to off.
Reviewed by: hsu, silby, jayanth, sam
Sponsored by: DARPA, NAI Labs
o on input don't strip the Ethernet header from packets
o input packet handling is now done with if_input
o track changes to ether_ifattach/ether_ifdetach API
o track changes to bpf tapping
o call ether_ioctl for default handling of ioctl's
o use constants from net/ethernet.h where possible
Reviewed by: many
Approved by: re
labeling checks and operations as with other network interfaces.
Eventually, if it proves desirable, we might want to offer special
casing of this or other tunnel interfaces where we have an existing
label of interest, rather than treating it as though it's an
entirely fresh mbuf in the incoming/outgoing encapsulation directions.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
o instead of a list of mbufs use a list of m_tag structures a la openbsd
o for netgraph et. al. extend the stock openbsd m_tag to include a 32-bit
ABI/module number cookie
o for openbsd compatibility define a well-known cookie MTAG_ABI_COMPAT and
use this in defining openbsd-compatible m_tag_find and m_tag_get routines
o rewrite KAME use of aux mbufs in terms of packet tags
o eliminate the most heavily used aux mbufs by adding an additional struct
inpcb parameter to ip_output and ip6_output to allow the IPsec code to
locate the security policy to apply to outbound packets
o bump __FreeBSD_version so code can be conditionalized
o fixup ipfilter's call to ip_output based on __FreeBSD_version
Reviewed by: julian, luigi (silent), -arch, -net, darren
Approved by: julian, silence from everyone else
Obtained from: openbsd (mostly)
MFC after: 1 month
code. The reverts the API change which made the <if>_clone_destory()
functions return an int instead of void bringing us into closer
alignment with NetBSD.
Reviewed by: net (a long time ago)
unit allocation with a bitmap in the generic layer. This
allows us to get rid of the duplicated rman code in every
clonable interface.
Reviewed by: brooks
Approved by: phk
Have sys/net/route.c:rtrequest1(), which takes ``rt_addrinfo *''
as the argument. Pass rt_addrinfo all the way down to rtrequest1
and ifa->ifa_rtrequest. 3rd argument of ifa->ifa_rtrequest is now
``rt_addrinfo *'' instead of ``sockaddr *'' (almost noone is
using it anyways).
Benefit: the following command now works. Previously we needed
two route(8) invocations, "add" then "change".
# route add -inet6 default ::1 -ifp gif0
Remove unsafe typecast in rtrequest(), from ``rtentry *'' to
``sockaddr *''. It was introduced by 4.3BSD-Reno and never
corrected.
Obtained from: BSD/OS, NetBSD
MFC after: 1 month
PR: kern/28360