that the datastructures needed to support the swap pager can take
enough space to fully deplete system memory, and cause a deadlock.
This change keeps large objects from being filled with dirty pages
without the appropriate swap pager datastructures. Right now,
default objects greater than 1/4 the size of available system memory
are converted to swap objects, thereby eliminating the risk of deadlock.
a condition when blocking can occur, and the daemon did not check properly
for a page remaining on the expected queue. Additionally, the inactive
target was being set much too large for small memory machines. It is now
being calculated based upon the amount of user memory available on every
pageout daemon run. Another problem was that if memory was very low, the
pageout daemon could fail repeatedly to traverse the inactive queue.
problem. BY MISTAKE, the vm_page_unqueue (or equiv) was removed from the
vm_fault code. Really bad things appear to happen if a page is on a queue
while it is being faulted.
contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>,
Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me:
More usage of the TAILQ macros. Additional minor fix to queue.h.
Performance enhancements to the pageout daemon.
Addition of a wait in the case that the pageout daemon
has to run immediately.
Slightly modify the pageout algorithm.
Significant revamp of the pmap/fork code:
1) PTE's and UPAGES's are NO LONGER in the process's map.
2) PTE's and UPAGES's reside in their own objects.
3) TOTAL elimination of recursive page table pagefaults.
4) The page directory now resides in the PTE object.
5) Implemented pmap_copy, thereby speeding up fork time.
6) Changed the pv entries so that the head is a pointer
and not an entire entry.
7) Significant cleanup of pmap_protect, and pmap_remove.
8) Removed significant amounts of machine dependent
fork code from vm_glue. Pushed much of that code into
the machine dependent pmap module.
9) Support more completely the reuse of already zeroed
pages (Page table pages and page directories) as being
already zeroed.
Performance and code cleanups in vm_map:
1) Improved and simplified allocation of map entries.
2) Improved vm_map_copy code.
3) Corrected some minor problems in the simplify code.
Implemented splvm (combo of splbio and splimp.) The VM code now
seldom uses splhigh.
Improved the speed of and simplified kmem_malloc.
Minor mod to vm_fault to avoid using pre-zeroed pages in the case
of objects with backing objects along with the already
existant condition of having a vnode. (If there is a backing
object, there will likely be a COW... With a COW, it isn't
necessary to start with a pre-zeroed page.)
Minor reorg of source to perhaps improve locality of ref.
is needed because of the vm_fault used to bring the page table page
for the kernel stack (UPAGES) back in. The consequence of the
previous incorrect change was a system hang.
in a suboptimal manner. I had also noticed some panics that appeared
to be at least superficially caused by this problem. Also, included
are some minor mods to support more general handling of page table page
faulting. More details in a future commit.
device have reference count problems. We mark the underlying object
ono-persistent, and account for the reference count that the VM system
maintainsfor the special device close. This should fix the removable
device problem.
regarding the "real" problem with maps that we have been having
over the last few weeks. He noted that the first_free pointer was
left dangling in certain circumstances -- and he was right!!! This
should fix the map problems that we were having, and also give us the
advantage of being able to simplify maps more aggressively.
The pmap_remove in vm_map_clean incorrectly unmapped the entire
map entry.
The new vm_map_simplify_entry code had an error (the offset
of the combined map entry was not set correctly.)
Submitted by: Alan Cox <alc@cs.rice.edu>
were paged in under low swap space conditions to both loose their
backing store and their dirty bits. This would cause pages to
be demand zeroed under certain conditions in low VM space conditions
and consequential sig-11's or sig-10's. This situation was made
worse lately when the level for swap space reclaim threshold was
increased.
on in the FreeBSD development, I had made a global lock around the
rlist code. This was bogus, and now the lock is maintained on a
per resource list basis. This now allows the rlist code to be used for
almost any non-interrupt level application.
that Bruce asked for.
These still are not quite perfect, and in particular, it can get
upset on extreme boundary cases (addr = 0xfff, len = 0xffffffff,
which would end up mapping a single page rather than failing), but
this is better code that I committed before.
(note, the VM system does not (apparently) support single mmap segment
sizes above 0x80000000 anyway)