forked. Otherwise, pagedaemon might reclaim the page without saving
its content into the swap file, resulting in the valid content
replaced by zeroes.
Reported and tested by: pho
Reviewed and comment update by: alc
MFC after: 1 week
In particular, do not lock Giant conditionally when calling into the
filesystem module, remove the VFS_LOCK_GIANT() and related
macros. Stop handling buffers belonging to non-mpsafe filesystems.
The VFS_VERSION is bumped to indicate the interface change which does
not result in the interface signatures changes.
Conducted and reviewed by: attilio
Tested by: pho
There are two aspects to the sequential access optimization: (1) read ahead
of pages that are expected to be accessed in the near future and (2) unmap
and cache behind of pages that are not expected to be accessed again. This
revision changes both aspects.
The read ahead optimization is now more effective. It starts with the same
initial read window as before, but arithmetically grows the window on
sequential page faults. This can yield increased read bandwidth. For
example, on one of my machines, a program using mmap() to read a file that
is several times larger than the machine's physical memory takes about 17%
less time to complete.
The unmap and cache behind optimization is now more selectively applied.
The read ahead window must grow to its maximum size before unmap and cache
behind is performed. This significantly reduces the number of times that
pages are unmapped and cached only to be reactivated a short time later.
The unmap and cache behind optimization now clears each page's referenced
flag. Previously, in the case of dirty pages, if the containing file was
still mapped at the time that the page daemon examined the dirty pages,
they would be reactivated.
From a stylistic standpoint, this revision also cleanly separates the
implementation of the read ahead and unmap/cache behind optimizations.
Glanced at: kib
MFC after: 2 weeks
a pair of records similar to syscall entry and return that a user can
use to determine how long page faults take. The new ktrace records are
enabled via the 'p' trace type, and are enabled in the default set of
trace points.
Reviewed by: kib
MFC after: 2 weeks
kernel.
When access restrictions are added to a page table entry, we flush the
corresponding virtual address mapping from the TLB. In contrast, when
access restrictions are removed from a page table entry, we do not
flush the virtual address mapping from the TLB. This is exactly as
recommended in AMD's documentation. In effect, when access
restrictions are removed from a page table entry, AMD's MMUs will
transparently refresh a stale TLB entry. In short, this saves us from
having to perform potentially costly TLB flushes. In contrast,
Intel's MMUs are allowed to generate a spurious page fault based upon
the stale TLB entry. Usually, such spurious page faults are handled
by vm_fault() without incident. However, when we are executing
no-fault sections of the kernel, we are not allowed to execute
vm_fault(). This change introduces special-case handling for spurious
page faults that occur in no-fault sections of the kernel.
In collaboration with: kib
Tested by: gibbs (an earlier version)
I would also like to acknowledge Hiroki Sato's assistance in
diagnosing this problem.
MFC after: 1 week
word to handle the dirty mask updates in vm_page_clear_dirty_mask().
Remove the vm page queue lock around vm_page_dirty() call in vm_fault_hold()
the sole purpose of which was to protect dirty on architectures which
does not provide short or byte-wide atomics.
Reviewed by: alc, attilio
Tested by: flo (sparc64)
MFC after: 2 weeks
flags field. Updates to the atomic flags are performed using the atomic
ops on the containing word, do not require any vm lock to be held, and
are non-blocking. The vm_page_aflag_set(9) and vm_page_aflag_clear(9)
functions are provided to modify afalgs.
Document the changes to flags field to only require the page lock.
Introduce vm_page_reference(9) function to provide a stable KPI and
KBI for filesystems like tmpfs and zfs which need to mark a page as
referenced.
Reviewed by: alc, attilio
Tested by: marius, flo (sparc64); andreast (powerpc, powerpc64)
Approved by: re (bz)
uiomove generates EFAULT if any accessed address is not mapped, as
opposed to handling the fault.
Sponsored by: The FreeBSD Foundation
Reviewed by: alc (previous version)
(Saying that the lock on the object that the page belongs to must be held
only represents one aspect of the rules.)
Eliminate the use of the page queues lock for atomically performing read-
modify-write operations on the dirty field when the underlying architecture
supports atomic operations on char and short types.
Document the fact that 32KB pages aren't really supported.
Reviewed by: attilio, kib
If supplied length is zero, and user address is invalid, function
might return -1, due to the truncation and rounding of the address.
The callers interpret the situation as EFAULT. Instead of handling
the zero length in caller, filter it in vm_fault_quick_hold_pages().
Sponsored by: The FreeBSD Foundation
Reviewed by: alc
OBJT_PHYS objects. Thus, there is no need for handling them specially
in vm_fault(). In fact, this special case handling would have led to
an assertion failure just before the call to pmap_enter().
Reviewed by: kib@
MFC after: 6 weeks
condition in proc_rwmem() and to (2) simplify the implementation of the
cxgb driver's vm_fault_hold_user_pages(). Specifically, in proc_rwmem()
the requested read or write could fail because the targeted page could be
reclaimed between the calls to vm_fault() and vm_page_hold().
In collaboration with: kib@
MFC after: 6 weeks
in "struct vm_object". This is required to make it possible to account
for per-jail swap usage.
Reviewed by: kib@
Tested by: pho@
Sponsored by: FreeBSD Foundation
(This eliminates a surprising number of page queues lock acquisitions by
vm_fault() because the page's queue is PQ_NONE and thus the page queues
lock is not needed to remove the page from a queue.)
vm_page_try_to_free(). Consequently, push down the page queues lock into
pmap_enter_quick(), pmap_page_wired_mapped(), pmap_remove_all(), and
pmap_remove_write().
Push down the page queues lock into Xen's pmap_page_is_mapped(). (I
overlooked the Xen pmap in r207702.)
Switch to a per-processor counter for the total number of pages cached.
managed pages that didn't already have that lock held. (Freeing an
unmanaged page, such as the various pmaps use, doesn't require the page
lock.)
This allows a change in vm_page_remove()'s locking requirements. It now
expects the page lock to be held instead of the page queues lock.
Consequently, the page queues lock is no longer required at all by callers
to vm_page_rename().
Discussed with: kib
to unconditionally set PG_REFERENCED on a page before sleeping. In many
cases, it's perfectly ok for the page to disappear, i.e., be reclaimed by
the page daemon, before the caller to vm_page_sleep() is reawakened.
Instead, we now explicitly set PG_REFERENCED in those cases where having
the page persist until the caller is awakened is clearly desirable. Note,
however, that setting PG_REFERENCED on the page is still only a hint,
and not a guarantee that the page should persist.
architecture from page queue lock to a hashed array of page locks
(based on a patch by Jeff Roberson), I've implemented page lock
support in the MI code and have only moved vm_page's hold_count
out from under page queue mutex to page lock. This changes
pmap_extract_and_hold on all pmaps.
Supported by: Bitgravity Inc.
Discussed with: alc, jeffr, and kib
the page table entry's accessed bit is either preset by the immediately
preceding call to pmap_enter() or by hardware (or software) upon return
from vm_fault() when the faulting access is restarted.
killed by OOM. When killed process waits for a page allocation, try to
satisfy the request as fast as possible.
This removes the often encountered deadlock, where OOM continously
selects the same victim process, that sleeps uninterruptibly waiting
for a page. The killed process may still sleep if page cannot be
obtained immediately, but testing has shown that system has much
higher chance to survive in OOM situation with the patch.
In collaboration with: pho
Reviewed by: alc
MFC after: 4 weeks
represented a write access that is allowed to override write protection.
Until now, VM_PROT_OVERRIDE_WRITE has been used to write breakpoints into
text pages. Text pages are not just write protected but they are also
copy-on-write. VM_PROT_OVERRIDE_WRITE overrides the write protection on the
text page and triggers the replication of the page so that the breakpoint
will be written to a private copy. However, here is where things become
confused. It is the debugger, not the process being debugged that requires
write access to the copied page. Nonetheless, the copied page is being
mapped into the process with write access enabled. In other words, once the
debugger sets a breakpoint within a text page, the program can write to its
private copy of that text page. Whereas prior to setting the breakpoint, a
SIGSEGV would have occurred upon a write access. VM_PROT_COPY addresses
this problem. The combination of VM_PROT_READ and VM_PROT_COPY forces the
replication of a copy-on-write page even though the access is only for read.
Moreover, the replicated page is only mapped into the process with read
access, and not write access.
Reviewed by: kib
MFC after: 4 weeks
pages.
(Note: Claims made in the comments about the handling of breakpoints in
wired pages have been false for roughly a decade. This and another bug
involving breakpoints will be fixed in coming changes.)
Reviewed by: kib
version of this file. When a process forks, any wired pages are immediately
copied because copy-on-write is not supported for wired pages. In other
words, the child process is given its own private copy of each wired page
from its parent's address space. Unfortunately, to date, these copied pages
have been mapped into the child's address space with the wrong permissions,
typically VM_PROT_ALL. This change corrects the permissions.
Reviewed by: kib
install new shadow object behind the map entry and copy the pages
from the underlying objects to it. This makes the mprotect(2) call to
actually perform the requested operation instead of silently do nothing
and return success, that causes SIGSEGV on later write access to the
mapping.
Reuse vm_fault_copy_entry() to do the copying, modifying it to behave
correctly when src_entry == dst_entry.
Reviewed by: alc
MFC after: 3 weeks
a device pager (OBJT_DEVICE) object in that it uses fictitious pages to
provide aliases to other memory addresses. The primary difference is that
it uses an sglist(9) to determine the physical addresses for a given offset
into the object instead of invoking the d_mmap() method in a device driver.
Reviewed by: alc
Approved by: re (kensmith)
MFC after: 2 weeks
charge the objects created by vm_fault_copy_entry. The object charge
was set, but reserve not incremented.
Reported by: Greg Rivers <gcr+freebsd-current tharned org>
Reviewed by: alc (previous version)
Approved by: re (kensmith)