net: endhostdnsent is named _endhostdnsent and is
private to netdb family of functions.
posix1e: acl_size.c has been never compiled in,
so there's no "acl_size".
rpc: "getnetid" is a static function.
stdtime: "gtime" is #ifdef'ed out in the source.
some symbols are specific only to some architectures,
e.g., ___tls_get_addr is only defined on i386.
__htonl, __htons, __ntohl and __ntohs are no longer
functions, they are now (internal) defines in
<machine/endian.h>.
Submitted by: ru
to mistakes from day 1, it has always had semantics inconsistent with
SVR4 and its successors. In particular, given argument M:
- On Solaris and FreeBSD/{alpha,sparc64}, it clobbers the old flags
and *sets* the new flag word to M. (NetBSD, too?)
- On FreeBSD/{amd64,i386}, it *clears* the flags that are specified in M
and leaves the remaining flags unchanged (modulo a small bug on amd64.)
- On FreeBSD/ia64, it is not implemented.
There is no way to fix fpsetsticky() to DTRT for both old FreeBSD apps
and apps ported from other operating systems, so the best approach
seems to be to kill the function and fix any apps that break. I
couldn't find any ports that use it, and any such ports would already
be broken on FreeBSD/ia64 and Linux anyway.
By the way, the routine has always been undocumented in FreeBSD,
except for an MLINK to a manpage that doesn't describe it. This
manpage has stated since 5.3-RELEASE that the functions it describes
are deprecated, so that must mean that functions that it is *supposed*
to describe but doesn't are even *more* deprecated. ;-)
Note that fpresetsticky() has been retained on FreeBSD/i386. As far
as I can tell, no other operating systems or ports of FreeBSD
implement it, so there's nothing for it to be inconsistent with.
PR: 75862
Suggested by: bde
bit in a long double. For architectures that don't have such a bit,
LDBL_NBIT is 0. This makes it possible to say `mantissa & ~LDBL_NBIT'
in places that previously used an #ifdef to select the right expression.
The optimizer should dispense with the extra arithmetic when LDBL_NBIT
is 0.
scalbn() implementation from libm. (The two functions are defined to
be identical, but ldexp() lives in libc for backwards compatibility.)
The old ldexp() implementation...
- was more complicated than this one
- set errno instead of raising FP exceptions
- got some corner cases wrong
(e.g. ldexp(1.0, 2000) in round-to-zero mode)
The new implementation lives in libc/gen instead of
libc/$MACHINE_ARCH/gen, since we don't need N copies of a
machine-independent file. The amd64 and i386 platforms
retain their fast and correct MD implementations and
override this one.
Eliminate gdtoa.mk and move its contents to ${MACHINE_ARCH}/Makefile.inc.
The purpose of having a separate file involved an abandoned scheme that
would have kept contrib/gdtoa out of the include path for the rest of libc.
gcc is using. This fixes devstat consumers (like vmstat, iostat,
systat) so they don't print crazy zillion digit numbers for
disk transfers and bandwidth.
According to gcc, long doubles are 64-bits, rather than 128 bits
like the SVR4 ABI spec wants them to be.. Note that MacOSX also treats
long doubles as 64-bits, and not 128 bits, so we are in good company.
Reviewed by: das
Approved by: grehan
isnormal() the hard way, rather than relying on fpclassify(). This is
a lose in the sense that we need a total of 12 functions, but it is
necessary for binary compatibility because we have never bumped libm's
major version number. In particular, isinf(), isnan(), and isnanf()
were BSD libc functions before they were C99 macros, so we can't
reimplement them in terms of fpclassify() without adding a dependency
on libc.so.5. I have tried to arrange things so that programs that
could be compiled in FreeBSD 4.X will generate the same external
references when compiled in 5.X. At the same time, the new macros
should remain C99-compliant.
The isinf() and isnan() functions remain in libc for historical
reasons; however, I have moved the functions that implement the macros
isfinite() and isnormal() to libm where they belong. Moreover,
half a dozen MD versions of isinf() and isnan() have been replaced
with MI versions that work equally well.
Prodded by: kris
- All those diffs to syscalls.master for each architecture *are*
necessary. This needed clarification; the stub code generation for
mlockall() was disabled, which would prevent applications from
linking to this API (suggested by mux)
- Giant has been quoshed. It is no longer held by the code, as
the required locking has been pushed down within vm_map.c.
- Callers must specify VM_MAP_WIRE_HOLESOK or VM_MAP_WIRE_NOHOLES
to express their intention explicitly.
- Inspected at the vmstat, top and vm pager sysctl stats level.
Paging-in activity is occurring correctly, using a test harness.
- The RES size for a process may appear to be greater than its SIZE.
This is believed to be due to mappings of the same shared library
page being wired twice. Further exploration is needed.
- Believed to back out of allocations and locks correctly
(tested with WITNESS, MUTEX_PROFILING, INVARIANTS and DIAGNOSTIC).
PR: kern/43426, standards/54223
Reviewed by: jake, alc
Approved by: jake (mentor)
MFC after: 2 weeks
package, a more recent, generalized set of routines. Among the
changes:
- Declare strtof() and strtold() in stdlib.h.
- Add glue to libc to support these routines for all kinds
of ``long double''.
- Update printf() to reflect the fact that dtoa works slightly
differently now.
As soon as I see that nothing has blown up, I will kill
src/lib/libc/stdlib/strtod.c. Soon printf() will be able
to use the new routines to output long doubles without loss
of precision, but numerous bugs in the existing code must
be addressed first.
Reviewed by: bde (briefly), mike (mentor), obrien
isnormal(). The current isinf() and isnan() are perserved for
binary compatibility with 5.0, but new programs will use the macros.
o Implement C99 comparison macros isgreater(), isgreaterequal(),
isless(), islessequal(), islessgreater(), isunordered().
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
o Add a MD header private to libc called _fpmath.h; this header
contains bitfield layouts of MD floating-point types.
o Add a MI header private to libc called fpmath.h; this header
contains bitfield layouts of MI floating-point types.
o Add private libc variables to lib/libc/$arch/gen/infinity.c for
storing NaN values.
o Add __double_t and __float_t to <machine/_types.h>, and provide
double_t and float_t typedefs in <math.h>.
o Add some C99 manifest constants (FP_ILOGB0, FP_ILOGBNAN, HUGE_VALF,
HUGE_VALL, INFINITY, NAN, and return values for fpclassify()) to
<math.h> and others (FLT_EVAL_METHOD, DECIMAL_DIG) to <float.h> via
<machine/float.h>.
o Add C99 macro fpclassify() which calls __fpclassify{d,f,l}() based
on the size of its argument. __fpclassifyl() is never called on
alpha because (sizeof(long double) == sizeof(double)), which is good
since __fpclassifyl() can't deal with such a small `long double'.
This was developed by David Schultz and myself with input from bde and
fenner.
PR: 23103
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
(significant portions)
Reviewed by: bde, fenner (earlier versions)