is already in pages, so we should not convert from bytes to pages.
The result of this bug was bad scaling of the VHPT relative to the
available memory.
Submitted by: Arun Sharma <arun@sharma-home.net>
o Add a MD header private to libc called _fpmath.h; this header
contains bitfield layouts of MD floating-point types.
o Add a MI header private to libc called fpmath.h; this header
contains bitfield layouts of MI floating-point types.
o Add private libc variables to lib/libc/$arch/gen/infinity.c for
storing NaN values.
o Add __double_t and __float_t to <machine/_types.h>, and provide
double_t and float_t typedefs in <math.h>.
o Add some C99 manifest constants (FP_ILOGB0, FP_ILOGBNAN, HUGE_VALF,
HUGE_VALL, INFINITY, NAN, and return values for fpclassify()) to
<math.h> and others (FLT_EVAL_METHOD, DECIMAL_DIG) to <float.h> via
<machine/float.h>.
o Add C99 macro fpclassify() which calls __fpclassify{d,f,l}() based
on the size of its argument. __fpclassifyl() is never called on
alpha because (sizeof(long double) == sizeof(double)), which is good
since __fpclassifyl() can't deal with such a small `long double'.
This was developed by David Schultz and myself with input from bde and
fenner.
PR: 23103
Submitted by: David Schultz <dschultz@uclink.Berkeley.EDU>
(significant portions)
Reviewed by: bde, fenner (earlier versions)
uio segment is empty. In this case no dma segment is create by
bus_dmamap_load_buffer, but the calling routine clears the first flag.
Under certain combinations of addresses of the first and second mbuf/uio
buffer this leads to corrupted DMA segment descriptors. This was already
fixed by tmm in sparc64/sparc64/iommu.c.
PR: kern/47733
Reviewed by: sam
Approved by: jake (mentor)
statclock based on profhz when profiling is enabled MD, since most platforms
don't use this anyway. This removes the need for statclock_process, whose
only purpose was to subdivide profhz, and gets the profiling clock running
outside of sched_lock on platforms that implement suswintr.
Also changed the interface for starting and stopping the profiling clock to
do just that, instead of changing the rate of statclock, since they can now
be separate.
Reviewed by: jhb, tmm
Tested on: i386, sparc64
likely not present under the simulator. If multiple partitions are
present on the virtual disk, then the 'a' partition would be the
most logical choice. Nowadays partitions are GPT based, which would
make the assumption of a disklabel even more questionable. Given
all the possible scenarios, assuming a raw "device" seems best.
saving and restoring ia32 specific registers when switching
context and ia32 support has not been compiled-in. The primary
reason for this change is that one of the ia32 registers (ar.fcr)
is wrongly marked as invalid by the simulator. Now that we avoid
using the register when possible, usability is improved. The
secundary reason is that it saves us 7 loads and stores.
Note that the PCB will continue to have room for these registers,
irrespective of the IA32 option. There are no benefits that make
it worthwhile.
and instead add platform, firmware and EFI stubs to the loader.
The net effect of this change is that besides a special console and
disk driver, the kernel has no knowledge of the simulator. This has
the following advantages:
o Simulator support is much harder to break,
o It's easier to make use of more feature complete simulators.
This would only need a change in the simulator specific loader,
o Running SMP kernels within the simulator. Note that ski at this
time does not simulate IPIs, so there's no way to start APs.
The platform, firmware and EFI stubs describe the following hardware:
o 4 CPU Itanium,
o 128 MB RAM within the 4GB address space,
o 64 MB RAM above the 4GB address space.
NOTE: The stubs in the skiloader describe a machine that should in
parts be defined by the simulator. Things like processor interrupt
block and AP wakeup vector cannot be choosen at random because they
require interpretation by the simulator. Currently the simulator is
ignorant of this.
This change introduces an unofficial SSC call SSC_SAL_SET_VECTORS
which is ignored by the simulator.
Tested with: ski (version 0.943 for linux)
I'm not convinced there is anything major wrong with the patch but
them's the rules..
I am using my "David's mentor" hat to revert this as he's
offline for a while.
I belive it got here by copy&paste and I see no signs in the source
code that BIO_DELETE was dealt with correctly and can only wonder
what kind of trouble this may have caused.
data structure called kse_upcall to manage UPCALL. All KSE binding
and loaning code are gone.
A thread owns an upcall can collect all completed syscall contexts in
its ksegrp, turn itself into UPCALL mode, and takes those contexts back
to userland. Any thread without upcall structure has to export their
contexts and exit at user boundary.
Any thread running in user mode owns an upcall structure, when it enters
kernel, if the kse mailbox's current thread pointer is not NULL, then
when the thread is blocked in kernel, a new UPCALL thread is created and
the upcall structure is transfered to the new UPCALL thread. if the kse
mailbox's current thread pointer is NULL, then when a thread is blocked
in kernel, no UPCALL thread will be created.
Each upcall always has an owner thread. Userland can remove an upcall by
calling kse_exit, when all upcalls in ksegrp are removed, the group is
atomatically shutdown. An upcall owner thread also exits when process is
in exiting state. when an owner thread exits, the upcall it owns is also
removed.
KSE is a pure scheduler entity. it represents a virtual cpu. when a thread
is running, it always has a KSE associated with it. scheduler is free to
assign a KSE to thread according thread priority, if thread priority is changed,
KSE can be moved from one thread to another.
When a ksegrp is created, there is always N KSEs created in the group. the
N is the number of physical cpu in the current system. This makes it is
possible that even an userland UTS is single CPU safe, threads in kernel still
can execute on different cpu in parallel. Userland calls kse_create to add more
upcall structures into ksegrp to increase concurrent in userland itself, kernel
is not restricted by number of upcalls userland provides.
The code hasn't been tested under SMP by author due to lack of hardware.
Reviewed by: julian
indicate that uma_small_alloc should not. This code should be refactored so
that there is not so much cross arch duplication.
Reviewed by: jake
Spotted by: tmm
Tested on: alpha, sparc64
Pointy hat to: jeff and everyone who cut and pasted the bad code. :-)
metadata. This fixes module dependency resolution by the kernel linker on
sparc64, where the relocations for the metadata are different than on other
architectures; the relative offset is in the addend of an Elf_Rela record
instead of the original value of the location being patched.
Also fix printf formats in debug code.
Submitted by: Hartmut Brandt <brandt@fokus.gmd.de>
PR: 46732
Tested on: alpha (obrien), i386, sparc64
portable copy. Note that pmap_extract() must be used instead of
pmap_kextract().
This is precursor work to a reorganization of vmapbuf() to close remaining
user/kernel races (which can lead to a panic).
and declare them extern in interrupt.c. This eliminates the need
for ia64_add_sapic(), which is called from sapic.c.
While here, reformat ia64_enable() in interrupt.c to improve
indentation and add a sysctl (machdep.apic) to dump the I/O APIC
entries currently programmed into all I/O APICs. The latter can
help analyze interrupt problems.
Note that the sysctl is not intended as a userland (software)
interface. It may be changed in the future to include counters
so that vmstat -i can make use of it. It may also be removed...
copies of the reload. Note that we use the precomputed itm_reload value
so that we can avoid a division in the kernel. The ia64 cpu does not
have integer divide, so this would have been done by a floating point
operation.
CLOCK_VECTOR and define it as 254, not 255. Vector 255 is already
in use as the AP wakeup vector on the HP rx2600.
This needs to be made more dynamic. The likelyhood of vector 254
being in use is pretty small, but we already have code to assign
vectors to IPIs (see sal.c) and it's preobably better to have a
centralized "vector manager" that hands out vectors based on
some imput (like priority).
handleclock itself is trivial.
While here, replace (itc_frequency+hz/2)/hz with itm_reload for
consistency. There's now a single place where we determine the
ITM reload value.
interrupt block). We use the previously hardcoded address as a
default only, but will otherwise use whatever ACPI tells us.
The address can be found in the MADT table header or in the
LAPIC override table entry.
space most of the time, but handles machines with lots of I/O
(S)APICs. We cannot make this more dynamic without breaking the
interface with vmstat. Hence, we need to fix the interface first.
name of unused entries from "intr XXX" to "#XXX". This makes it
easier to debug interrupt problems, because vmstat can be hacked
more easily to dump all interrupt entries that are in use and not
those that have had interrupts.
devices aren't necessarily mapped within 4GB. I/O port addresses
are offsets into the memory mapped I/O port space, which is not
larger than 16MB. No need to convert those to 64 bit types.
o Make the URL of the handbook match reality
o Improve some comments (either wording or formatting)
o Sync with i386: comment-out DDB, INVARIANTS, INVARIANT_SUPPORT
o Add some more SCSI/RAID controllers:
ahd, mpt, asr, ciss, dpt, iir, mly, ida
o Remove support for the parallel port
o Add NICs: em, bge
o Remove NICs: ste, tl, tx, vr, wb
o Enable USB support again, except of the UHCI host controller.
UHCI still hangs the BigSur (=HP i2000) machines, and makes
them useless. The OHCI controller works fine. Note that newer
ia64 boxes based on the Intel host controllers (UHCI or EHCI)
still won't have USB support. We really need to import the
EHCI host controller from NetBSD...
of the `machdep.acpi_root' sysctl. This is required on ia64
because the root pointer hardly ever, if at all, lives in the
first MB of memory and also because scanning the first MB of
memory can cause machine checks.
This provides a save and reliable way for ACPI tools to work
with the tables if ACPI support is present in the kernel. On
ia64 ACPI is non-optional.
end up with a dump offset that's smaller than the start of the
dump device and either clobber data in preceding partitions or
try to write beyond the end of the medium (unsigned wrap).
Implement legacy behaviour to never write to the first 64KB as
that is where metadata (ie disklabels) may reside.