Retire the "d_dump_t" and use the "dumper_t" type instead.
Dumper_t takes a void * as first arg which is more general than the
dev_t taken by d_dump_t. (Remember: we could have net-dumpers if
somebody wrote us one!)
Define the convention for GEOM controlled disk devices to be that the
first argument to the dumper function is the struct disk pointer.
Change device drivers accordingly.
dev_t to the method functions.
The dev_t can still be found at struct consdev *->cn_dev.
Add a void *cn_arg element to struct consdev which the drivers can use
for retrieving their softc.
In devsw() return dead_cdevsw instead of NULL in case the dev_t does not
have a si_devsw.
This may improve our survival chances with devices which go away unexpectedly.
compile-time constants). That is, a "bucket" now is not necessarily
a page-worth of mbufs or clusters, but it is MBUF_BUCK_SZ, CLUS_BUCK_SZ
worth of mbufs, clusters.
o Rename {mbuf,clust}_limit to {mbuf,clust}_hiwm and introduce
{mbuf,clust}_lowm, which currently has no effect but will be used
to set the low watermarks.
o Fix netstat so that it can deal with the differently-sized buckets
and teach it about the low watermarks too.
o Make sure the per-cpu stats for an absent CPU has mb_active set to 0,
explicitly.
o Get rid of the allocate refcounts from mbuf map mess. Instead,
just malloc() the refcounts in one shot from mbuf_init()
o Clean up / update comments in subr_mbuf.c
used to share resource limits between rfork threads, but never was.
Removing it makes resource limit locking much simpler -- only the current
process can change the contents of the structure that p_limit points to.
reference counter array for mbuf clusters. I don't know
how this got past early testing nor how it survived so long
without getting caught. If anyone was seeing really really
bizarre memory corruption in a few mbufs this would be why.
#if'ed out for a while. Complete the deed and tidy up some other bits.
We need to be able to call this stuff from outer edges of interrupt
handlers for devices that have the ISR bits in pci config space. Making
the bios code mpsafe was just too hairy. We had also stubbed it out some
time ago due to there simply being too much brokenness in too many systems.
This adds a leaf lock so that it is safe to use pci_read_config() and
pci_write_config() from interrupt handlers. We still will use pcibios
to do interrupt routing if there is no acpi.. [yes, I tested this]
Briefly glanced at by: imp
sched_lock around accesses to p_stats->p_timer[] to avoid a potential
race with hardclock. getitimer(), setitimer() and the realitexpire()
callout are now Giant-free.
add a signal to a mailbox's pending set.
- Add a new function, thread_signal_upcall(), this causes the current thread
to upcall so that we can deliver pending signals.
Reviewed by: mini
I was in two minds as to where to put them in the first case..
I should have listenned to the other mind.
Submitted by: parts by davidxu@
Reviewed by: jeff@ mini@
queue lock already held.
- In getblk() and flushbufqueues() use bremfreel() while we still have the
buf queue lock held to keep the lists consistent.
- Add LK_NOWAIT to two cases where we're essentially asserting that the bufs
are not locked while acquiring the locks. This will make sure that we get
the appropriate panic() and not another one for sleeping with a lock held.
- Mark the process leader as having an advisory lock
- Check if process leader is marked as having advisory lock when
closing file
- Check that file is still open after lock has been obtained
- Don't allow file descriptor table sharing between processes
with different leaders
PR: 10265
Reviewed by: alfred
freebsd4_sigaction() and osigaction() instead of around the whole
body of those functions. They now no longer hold Giant around calls
to copyin() and copyout(), and it is slightly more obvious what
Giant is protecting.
barrier between free'ing filedesc structures. Basically if you want to
access another process's filedesc, you want to hold this mutex over the
entire operation.
opposed to returning the top of the old chain when there was one and
the top of the newly allocated chain if there was no old chain.
Actually, it should be noted that prior to this fix, although the
comment above m_getm() advertised that m_getm() would return the
top of the old chain (if an old chain was being passed in) it
actually [wrongly] was returning the tail mbuf in the old chain
instead. This is a bug but since the one use of m_getm() in
the tree luckily did not depend on the behavior, it happened
to work out without notice.
Harti Brandt pointed out that the advertised behavior was actually
not the real behavior and so this change makes m_getm() ALWAYS
return the newly allocated chain (and fixes the comment). This
is less confusing and is the best course of action as then the
caller is always able to have both a reference to the top of
the original chain (because it's passing it in in the call) and
a reference to the newly attached chain. Although the API is
slightly modified, I don't think that any third-party code uses
m_getm() and if it does, it surely can't be working properly
because the old behavior was bogus.
API bug pointed out by: Harti Brandt <brandt@fokus.fraunhofer.de>