"Whitspace" churn after the VIMAGE/VNET whirls.
Remove the need for some "init" functions within the network
stack, like pim6_init(), icmp_init() or significantly shorten
others like ip6_init() and nd6_init(), using static initialization
again where possible and formerly missed.
Move (most) variables back to the place they used to be before the
container structs and VIMAGE_GLOABLS (before r185088) and try to
reduce the diff to stable/7 and earlier as good as possible,
to help out-of-tree consumers to update from 6.x or 7.x to 8 or 9.
This also removes some header file pollution for putatively
static global variables.
Revert VIMAGE specific changes in ipfilter::ip_auth.c, that are
no longer needed.
Reviewed by: jhb
Discussed with: rwatson
Sponsored by: The FreeBSD Foundation
Sponsored by: CK Software GmbH
MFC after: 6 days
vnet.h, we now use jails (rather than vimages) as the abstraction
for virtualization management, and what remained was specific to
virtual network stacks. Minor cleanups are done in the process,
and comments updated to reflect these changes.
Reviewed by: bz
Approved by: re (vimage blanket)
unused custom mutex/condvar-based sleep locks with two locks: an
rwlock (for non-sleeping use) and sxlock (for sleeping use). Either
acquired for read is sufficient to stabilize the vnet list, but both
must be acquired for write to modify the list.
Replace previous no-op read locking macros, used in various places
in the stack, with actual locking to prevent race conditions. Callers
must declare when they may perform unbounded sleeps or not when
selecting how to lock.
Refactor vnet sysinits so that the vnet list and locks are initialized
before kernel modules are linked, as the kernel linker will use them
for modules loaded by the boot loader.
Update various consumers of these KPIs based on whether they may sleep
or not.
Reviewed by: bz
Approved by: re (kib)
(DPCPU), as suggested by Peter Wemm, and implement a new per-virtual
network stack memory allocator. Modify vnet to use the allocator
instead of monolithic global container structures (vinet, ...). This
change solves many binary compatibility problems associated with
VIMAGE, and restores ELF symbols for virtualized global variables.
Each virtualized global variable exists as a "reference copy", and also
once per virtual network stack. Virtualized global variables are
tagged at compile-time, placing the in a special linker set, which is
loaded into a contiguous region of kernel memory. Virtualized global
variables in the base kernel are linked as normal, but those in modules
are copied and relocated to a reserved portion of the kernel's vnet
region with the help of a the kernel linker.
Virtualized global variables exist in per-vnet memory set up when the
network stack instance is created, and are initialized statically from
the reference copy. Run-time access occurs via an accessor macro, which
converts from the current vnet and requested symbol to a per-vnet
address. When "options VIMAGE" is not compiled into the kernel, normal
global ELF symbols will be used instead and indirection is avoided.
This change restores static initialization for network stack global
variables, restores support for non-global symbols and types, eliminates
the need for many subsystem constructors, eliminates large per-subsystem
structures that caused many binary compatibility issues both for
monitoring applications (netstat) and kernel modules, removes the
per-function INIT_VNET_*() macros throughout the stack, eliminates the
need for vnet_symmap ksym(2) munging, and eliminates duplicate
definitions of virtualized globals under VIMAGE_GLOBALS.
Bump __FreeBSD_version and update UPDATING.
Portions submitted by: bz
Reviewed by: bz, zec
Discussed with: gnn, jamie, jeff, jhb, julian, sam
Suggested by: peter
Approved by: re (kensmith)
the ROUTETABLES kernel option thus there is no need to include opt_route.h
anymore in all consumers of vnet.h and no longer depend on it for module
builds.
Remove the hidden include in flowtable.h as well and leave the two
explicit #includes in ip_input.c and ip_output.c.
Vnet modules and protocol domains may now register destructor
functions to clean up and release per-module state. The destructor
mechanisms can be triggered by invoking "vimage -d", or a future
equivalent command which will be provided via the new jail framework.
While this patch introduces numerous placeholder destructor functions,
many of those are currently incomplete, thus leaking memory or (even
worse) failing to stop all running timers. Many of such issues are
already known and will be incrementaly fixed over the next weeks in
smaller incremental commits.
Apart from introducing new fields in structs ifnet, domain, protosw
and vnet_net, which requires the kernel and modules to be rebuilt, this
change should have no impact on nooptions VIMAGE builds, since vnet
destructors can only be called in VIMAGE kernels. Moreover,
destructor functions should be in general compiled in only in
options VIMAGE builds, except for kernel modules which can be safely
kldunloaded at run time.
Bump __FreeBSD_version to 800097.
Reviewed by: bz, julian
Approved by: rwatson, kib (re), julian (mentor)
an accessor function to get the correct rnh pointer back.
Update netstat to get the correct pointer using kvm_read()
as well.
This not only fixes the ABI problem depending on the kernel
option but also permits the tunable to overwrite the kernel
option at boot time up to MAXFIBS, enlarging the number of
FIBs without having to recompile. So people could just use
GENERIC now.
Reviewed by: julian, rwatson, zec
X-MFC: not possible
previously always pointing to the default vnet context, to a
dynamically changing thread-local one. The currvnet context
should be set on entry to networking code via CURVNET_SET() macros,
and reverted to previous state via CURVNET_RESTORE(). Recursions
on curvnet are permitted, though strongly discuouraged.
This change should have no functional impact on nooptions VIMAGE
kernel builds, where CURVNET_* macros expand to whitespace.
The curthread->td_vnet (aka curvnet) variable's purpose is to be an
indicator of the vnet context in which the current network-related
operation takes place, in case we cannot deduce the current vnet
context from any other source, such as by looking at mbuf's
m->m_pkthdr.rcvif->if_vnet, sockets's so->so_vnet etc. Moreover, so
far curvnet has turned out to be an invaluable consistency checking
aid: it helps to catch cases when sockets, ifnets or any other
vnet-aware structures may have leaked from one vnet to another.
The exact placement of the CURVNET_SET() / CURVNET_RESTORE() macros
was a result of an empirical iterative process, whith an aim to
reduce recursions on CURVNET_SET() to a minimum, while still reducing
the scope of CURVNET_SET() to networking only operations - the
alternative would be calling CURVNET_SET() on each system call entry.
In general, curvnet has to be set in three typicall cases: when
processing socket-related requests from userspace or from within the
kernel; when processing inbound traffic flowing from device drivers
to upper layers of the networking stack, and when executing
timer-driven networking functions.
This change also introduces a DDB subcommand to show the list of all
vnet instances.
Approved by: julian (mentor)
rearrange / replace / adjust several INIT_VNET_* initializer
macros, all of which currently resolve to whitespace.
Reviewed by: bz (an older version of the patch)
Approved by: julian (mentor)
net/route.h.
Remove the hidden include of opt_route.h and net/route.h from net/vnet.h.
We need to make sure that both opt_route.h and net/route.h are included
before net/vnet.h because of the way MRT figures out the number of FIBs
from the kernel option. If we do not, we end up with the default number
of 1 when including net/vnet.h and array sizes are wrong.
This does not change the list of files which depend on opt_route.h
but we can identify them now more easily.
to in_rtrequest(); the radix head lock is already acquired before
rnh_walktree is called in in_rtqtimo_one(). This avoids a recursive
acquisition that is no longer permitted in 8.x due to use of an rwlock
for the radix head lock.
Reported by: dikshie <dikshie at gmail.com>
MFC after: 3 days
1. separating L2 tables (ARP, NDP) from the L3 routing tables
2. removing as much locking dependencies among these layers as
possible to allow for some parallelism in the search operations
3. simplify the logic in the routing code,
The most notable end result is the obsolescent of the route
cloning (RTF_CLONING) concept, which translated into code reduction
in both IPv4 ARP and IPv6 NDP related modules, and size reduction in
struct rtentry{}. The change in design obsoletes the semantics of
RTF_CLONING, RTF_WASCLONE and RTF_LLINFO routing flags. The userland
applications such as "arp" and "ndp" have been modified to reflect
those changes. The output from "netstat -r" shows only the routing
entries.
Quite a few developers have contributed to this project in the
past: Glebius Smirnoff, Luigi Rizzo, Alessandro Cerri, and
Andre Oppermann. And most recently:
- Kip Macy revised the locking code completely, thus completing
the last piece of the puzzle, Kip has also been conducting
active functional testing
- Sam Leffler has helped me improving/refactoring the code, and
provided valuable reviews
- Julian Elischer setup the perforce tree for me and has helped
me maintaining that branch before the svn conversion
directly include only the header files needed. This reduces the
unneeded spamming of various headers into lots of files.
For now, this leaves us with very few modules including vnet.h
and thus needing to depend on opt_route.h.
Reviewed by: brooks, gnn, des, zec, imp
Sponsored by: The FreeBSD Foundation
whitespace) macros from p4/vimage branch.
Do a better job at enclosing all instantiations of globals
scheduled for virtualization in #ifdef VIMAGE_GLOBALS blocks.
De-virtualize and mark as const saorder_state_alive and
saorder_state_any arrays from ipsec code, given that they are never
updated at runtime, so virtualizing them would be pointless.
Reviewed by: bz, julian
Approved by: julian (mentor)
Obtained from: //depot/projects/vimage-commit2/...
X-MFC after: never
Sponsored by: NLnet Foundation, The FreeBSD Foundation
for virtualization.
Instead of initializing the affected global variables at instatiation,
assign initial values to them in initializer functions. As a rule,
initialization at instatiation for such variables should never be
introduced again from now on. Furthermore, enclose all instantiations
of such global variables in #ifdef VIMAGE_GLOBALS blocks.
Essentialy, this change should have zero functional impact. In the next
phase of merging network stack virtualization infrastructure from
p4/vimage branch, the new initialization methology will allow us to
switch between using global variables and their counterparts residing in
virtualization containers with minimum code churn, and in the long run
allow us to intialize multiple instances of such container structures.
Discussed at: devsummit Strassburg
Reviewed by: bz, julian
Approved by: julian (mentor)
Obtained from: //depot/projects/vimage-commit2/...
X-MFC after: never
Sponsored by: NLnet Foundation, The FreeBSD Foundation
from the vimage project, as per plan established at devsummit 08/08:
http://wiki.freebsd.org/Image/Notes200808DevSummit
Introduce INIT_VNET_*() initializer macros, VNET_FOREACH() iterator
macros, and CURVNET_SET() context setting macros, all currently
resolving to NOPs.
Prepare for virtualization of selected SYSCTL objects by introducing a
family of SYSCTL_V_*() macros, currently resolving to their global
counterparts, i.e. SYSCTL_V_INT() == SYSCTL_INT().
Move selected #defines from sys/sys/vimage.h to newly introduced header
files specific to virtualized subsystems (sys/net/vnet.h,
sys/netinet/vinet.h etc.).
All the changes are verified to have zero functional impact at this
point in time by doing MD5 comparision between pre- and post-change
object files(*).
(*) netipsec/keysock.c did not validate depending on compile time options.
Implemented by: julian, bz, brooks, zec
Reviewed by: julian, bz, brooks, kris, rwatson, ...
Approved by: julian (mentor)
Obtained from: //depot/projects/vimage-commit2/...
X-MFC after: never
Sponsored by: NLnet Foundation, The FreeBSD Foundation
rt_check() in its original form proved to be sufficient and
rt_check_fib() can go away (as can its evil twin in_rt_check()).
I believe this does NOT address the crashes people have been seeing
in rt_check.
MFC after: 1 week
virtualization work done by Marko Zec (zec@).
This is the first in a series of commits over the course
of the next few weeks.
Mark all uses of global variables to be virtualized
with a V_ prefix.
Use macros to map them back to their global names for
now, so this is a NOP change only.
We hope to have caught at least 85-90% of what is needed
so we do not invalidate a lot of outstanding patches again.
Obtained from: //depot/projects/vimage-commit2/...
Reviewed by: brooks, des, ed, mav, julian,
jamie, kris, rwatson, zec, ...
(various people I forgot, different versions)
md5 (with a bit of help)
Sponsored by: NLnet Foundation, The FreeBSD Foundation
X-MFC after: never
V_Commit_Message_Reviewed_By: more people than the patch
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
the routing table. Move all usage and references in the tcp stack
from the routing table metrics to the tcp hostcache.
It caches measured parameters of past tcp sessions to provide better
initial start values for following connections from or to the same
source or destination. Depending on the network parameters to/from
the remote host this can lead to significant speedups for new tcp
connections after the first one because they inherit and shortcut
the learning curve.
tcp_hostcache is designed for multiple concurrent access in SMP
environments with high contention and is hash indexed by remote
ip address.
It removes significant locking requirements from the tcp stack with
regard to the routing table.
Reviewed by: sam (mentor), bms
Reviewed by: -net, -current, core@kame.net (IPv6 parts)
Approved by: re (scottl)
accordingly. The define is left intact for ABI compatibility
with userland.
This is a pre-step for the introduction of tcp_hostcache. The
network stack remains fully useable with this change.
Reviewed by: sam (mentor), bms
Reviewed by: -net, -current, core@kame.net (IPv6 parts)
Approved by: re (scottl)
complex locking and rework ip_rtaddr() to do its own rtlookup.
Adopt all its callers to this and make ip_output() callable
with NULL rt pointer.
Reviewed by: sam (mentor)
directly on the radix tree and does not hold any routing table refernces.
This fixes the reference counting problems that manifested itself as a
panic during unmount of filesystems that were mounted by NFS over an
interface that had been removed.
Supported by: FreeBSD Foundation
routine that takes a locked routing table reference and removes all
references to the entry in the various data structures. This
eliminates instances of recursive locking and also closes races
where the lock on the entry had to be dropped prior to calling
rtrequest(RTM_DELETE). This also cleans up confusion where the
caller held a reference to an entry that might have been reclaimed
(and in some cases used that reference).
Supported by: FreeBSD Foundation
that covers updates to the contents. Note this is separate from holding
a reference and/or locking the routing table itself.
Other/related changes:
o rtredirect loses the final parameter by which an rtentry reference
may be returned; this was never used and added unwarranted complexity
for locking.
o minor style cleanups to routing code (e.g. ansi-fy function decls)
o remove the logic to bump the refcnt on the parent of cloned routes,
we assume the parent will remain as long as the clone; doing this avoids
a circularity in locking during delete
o convert some timeouts to MPSAFE callouts
Notes:
1. rt_mtx in struct rtentry is guarded by #ifdef _KERNEL as user-level
applications cannot/do-no know about mutex's. Doing this requires
that the mutex be the last element in the structure. A better solution
is to introduce an externalized version of struct rtentry but this is
a major task because of the intertwining of rtentry and other data
structures that are visible to user applications.
2. There are known LOR's that are expected to go away with forthcoming
work to eliminate many held references. If not these will be resolved
prior to release.
3. ATM changes are untested.
Sponsored by: FreeBSD Foundation
Obtained from: BSD/OS (partly)
A route generated from an RTF_CLONING route had the RTF_WASCLONED flag
set but did not have a reference to the parent route, as documented in
the rtentry(9) manpage. This prevented such routes from being deleted
when their parent route is deleted.
Now, for example, if you delete an IP address from a network interface,
all ARP entries that were cloned from this interface route are flushed.
This also has an impact on netstat(1) output. Previously, dynamically
created ARP cache entries (RTF_STATIC flag is unset) were displayed as
part of the routing table display (-r). Now, they are only printed if
the -a option is given.
netinet/in.c, netinet/in_rmx.c:
When address is removed from an interface, also delete all routes that
point to this interface and address. Previously, for example, if you
changed the address on an interface, outgoing IP datagrams might still
use the old address. The only solution was to delete and re-add some
routes. (The problem is easily observed with the route(8) command.)
Note, that if the socket was already bound to the local address before
this address is removed, new datagrams generated from this socket will
still be sent from the old address.
PR: kern/20785, kern/21914
Reviewed by: wollman (the idea)
"time" wasn't a atomic variable, so splfoo() protection were needed
around any access to it, unless you just wanted the seconds part.
Most uses of time.tv_sec now uses the new variable time_second instead.
gettime() changed to getmicrotime(0.
Remove a couple of unneeded splfoo() protections, the new getmicrotime()
is atomic, (until Bruce sets a breakpoint in it).
A couple of places needed random data, so use read_random() instead
of mucking about with time which isn't random.
Add a new nfs_curusec() function.
Mark a couple of bogosities involving the now disappeard time variable.
Update ffs_update() to avoid the weird "== &time" checks, by fixing the
one remaining call that passwd &time as args.
Change profiling in ncr.c to use ticks instead of time. Resolution is
the same.
Add new function "tvtohz()" to avoid the bogus "splfoo(), add time, call
hzto() which subtracts time" sequences.
Reviewed by: bde