The pnfsdskill(8) command will normally fail if there is no valid mirror
for the DS to be disabled. However, a system administrator may need to
disable a DS which does not have a valid mirror so that the nfsd threads
can be terminated. This patch adds the kernel code needed by pnfsdskill(8)
to implement this "forced" case of disabling a DS.
This patch only affects the pNFS server.
If a mirrored DS is being recovered that has a lot of large sparse files,
pnfsdscopymr(8) would use a lot of space on the recovered mirror since it
would write the "holes" in the file being mirrored.
This patch adds code to check for a "hole" and skip doing the write.
The check is done on a "per PNFSDS_COPYSIZ size block", which is currently 64K.
I think that most file server file systems will be using a blocksize at
least this large. If the file server is using a smaller blocksize and
smaller holes need to be preserved, PNFSDS_COPYSIZ could be decreased.
The block of 0s is malloc()d, since pnfsdcopymr(8) should be an infrequent
occurrence.
After the addition of the "#mds_path" suffix for a DS specification on the
"-p" nfsd option, it is possible to have a mix of DSs assigned to an MDS
file system and DSs that store files for all DSs. This is what I referred
to as "hybrid" above.
At first, I didn't think this hybrid case would be useful, but I now believe
that some system administrators may fine it useful.
This patch modifies the file storage assignment algorithm so that it
makes the "#mds_path" DSs take priority and the all file systems DSs
are now only used for MDS file systems with no "#mds_path" DS servers.
This only affects the pNFS server for this "hybrid" case.
an NFSERR_STALE error reported via a LayoutReturn.
The current FreeBSD client can generate these errors for an operational
DS while doing a recovery of a mirror after a mirrored DS has been repaired.
I am not sure why these errors occur, but my best current guess is a race
between the Layout Recall issued by the kernel code run from pnfsdscopymr(8)
and a Read operation on the DS for the file bing copied.
The errors are not fatal, since the client falls back on doing I/O through
the MDS, which can do the I/O successfully as a proxy. (The fact that the
MDS can do this indicates that the file does still exist on the functioning
DS.)
This change only affects the pNFS server and only when a client does a
LayoutReturn with the NFSERR_STALE error report.
The recently added feature of the pNFS server will set an fsid for the
MDS file system to define the file system a DS should store files for.
For a case where a DS handling all file systems has failed, it was possible
for the code to check for a mirror with a specified fs, even though
nfsdev_mdsisset was 0, possibly causing a false successful check for a mirror.
This patch adds a check for nfsdev_mdsisset != 0 to avoid this.
It only affects the pNFS server for a rare case. Found via code inspection.
Without this patch, the pNFS server distributes the data storage files across
all of the specified DSs.
A tester noted that it would be nice if a system administrator could control
which DSs are used to store the file data for a given exported MDS file system.
This patch adds the kernel support to do this. It also makes a slight semantic
change to nfsv4_findmirror(), since some uses of it no longer require that
the DS being searched for have a current mirror.
A patch that will be committed in a few minutes will modify the nfsd daemon
to support this feature.
The patch should only affect sites using the pNFS server (specified via the
"-p" command line option for nfsd.
Suggested by: james.rose@framestore.com
If a pNFS service was set up where the number of DSs equals the mirror level
and then a DS was disabled, the service would create files with duplicate
entries for the same DS. This bug occurred because I didn't realize that
TAILQ_FOREACH_FROM() would start at the beginning of the list when the
inital value of the variable was NULL.
This patch also changes the pNFS server DS file creation code so that it
creates entrie(s) with 0.0.0.0 IP address when it cannot create mirror level
files due to lack of DSs.
The patch only affects the pNFS service and only when it was created with
a number of DSs equal to the mirror level and mirroring is enabled.
Most NFSv4.1 compound RPCs start with a Sequence operation. For these
cases, save the slotid and note that it is saved by setting ND_HASSLOTID.
This is used by r335568 to free up the session slot and disable it.
MFC after: 2 weeks
r335568 uses a flag called ND_HASSLOTID to indicate that the slotid is set,
so it can free and invalidate it.
This flag needs to be set, which will be done in a subsequent commit.
MFC after: 2 weeks
When a "soft" mount is used for NFSv4.1, an RPC that fails without completing
will leave a slot in the NFSv4.1 session in an indeterminate state.
As such, all that can be done is free up the slot while making is no longer
usable.
A "soft" NFSv4.1 mount is not recommended in general, since it will leave
Open/Lock state in an indeterminate state. An exception is a pNFS mount of
a DS, since there are no Opens/Locks done for them except file creates
where loss of the Open state does not matter.
The patch also makes connections to DSs soft, so that they will fail when
a DS is non-functional or network partitioned, allowing the pNFS MDS to disable
the DS for a mirrored configuration.
This patch should not affect normal "hard" NFSv4.1 mounts.
MFC after: 2 weeks
When the NFSv4.1 pNFS client gets an error for a DS I/O operation using a
Flexible File layout, it returns the layout with an error.
This patch changes the code slightly, so that it returns the layout for all
errors except EACCES and lets the MDS decide what to do based on the error.
It also makes a couple of changes to nfscl_layoutrecall() to ensure that
the first layoutreturn(s) will have the error in the reply.
Plus, the patch adds a wakeup() so that the "nfscl" thread won't wait 1sec
before doing the LayoutReturn.
Tested against the pNFS service.
This patch should not affect non-pNFS use of the client.
The unused "dsp" argument will be used by a future patch that disables the
connection to the DS when possible.
MFC after: 2 weeks
This patch adds a counter that limits the number of disabled mirrored DSs
to mirror level - 1. It also makes a small change that keeps a Write that
has failed with EACCES when attempted by a client to a DS from disabling
the DS.
This patch only affects the pNFS server.
The Flexible File layout LayoutReturn operation has argument fields where
an I/O error encountered when attempting I/O on a DS can be reported back
to the MDS.
This patch adds code to the client to do this for the Flexible File layout
mirrored case.
This patch should only affect mounts using the "pnfs" option against servers
that support the Flexible File layout.
MFC after: 2 weeks
Normally "soft,retrans=2" cannot be safely used on NFSv4 mounts, since
the RPC can fail and leave the open/lock state in an undefined state.
Doing I/O on a pNFS DS is an exception to this, since no open/lock state
is maintained on the DS server.
It is useful to do "soft,retrans=2" connections to a DS when it is mirrored,
so that the client can detect failure of the DS. As such, mounts from the MDS
to the DSs should use these mount options when mirroring is enabled.
However, the NFSv4.1 client still leaves the session in an undefined state
when this happens.
This patch fixes the problem by setting the session defunct, so it will
no longer be used.
The patch also sets "retries=2" on the connections done by the client to
a DS, which is the internal equivalent of "soft,retrans=2".
The client does not know if the server implements mirroring at connection
time, but always doing this should be safe, since it will fall back on doing
I/O via the MDS as a proxy when there is a failure doing an I/O RPC to the DS.
This patch should not affect non-pNFS client mounts.
MFC after: 2 weeks
Four functions nfscl_reqstart(), nfscl_fillsattr(), nfsm_stateidtom()
and nfsmnt_mdssession() are now called from within the nfsd.
As such, they needed to be moved from nfscl.ko to nfscommon.ko so that
nfsd.ko would load when nfscl.ko wasn't loaded.
Reported by: herbert@gojira.at
the old encodings for the lower 16 and 32 bits and only using the
higher 32 bits for unusually large major and minor numbers. This
change breaks compatibility with the previous encoding (which was only
used in -current).
Fix truncation to (essentially) 16-bit dev_t in newnfs v3.
Any encoding of device numbers gives an ABI, so it can't be changed
without translations for compatibility. Extra bits give the much
larger complication that the translations need to compress into fewer
bits. Fortunately, more than 32 bits are rarely needed, so
compression is rarely needed except for 16-bit linux dev_t where it
was always needed but never done.
The previous encoding moved the major number into the top 32 bits.
Almost no translation code handled this, so the major number was blindly
truncated away in most 32-bit encodings. E.g., for ffs, mknod(8) with
major = 1 and minor = 2 gave dev_t = 0x10000002; ffs cannot represent
this and blindly truncated it to 2. But if this mknod was run on any
released version of FreeBSD, it gives dev_t = 0x102. ffs can represent
this, but in the previous encoding it was not decoded, giving major = 0,
minor = 0x102.
The presence of bugs was most obvious for exporting dev_t's from an
old system to -current, since bugs in newnfs augment them. I fixed
oldnfs to support 32-bit dev_t in 1996 (r16634), but this regressed
to 16-bit dev_t in newnfs, first to the old 16-bit encoding and then
further in -current. E.g., old ad0 with major = 234, minor = 0x10002
had the correct (major, minor) number on the wire, but newnfs truncated
this to (234, 2) and then the previous encoding shifted the major
number into oblivion as seen by ffs or old applications.
I first tried to fix this by translating on every ABI/API boundary, but
there are too many boundaries and too many sloppy translations by blind
truncation. So use the old encoding for the low 32 bits so that sloppy
translations work no worse than before provided the high 32 bits are
not set. Add some error checking for when bits are lost. Keep not
doing any error checking for translations for almost everything in
compat/linux.
compat/freebsd32/freebsd32_misc.c:
Optionally check for losing bits after possibly-truncating assignments as
before.
compat/linux/linux_stats.c:
Depend on the representation being compatible with Linux's (or just with
itself for local use) and spell some of the translations as assignments in
a macro that hides the details.
fs/nfsclient/nfs_clcomsubs.c:
Essentially the same fix as in 1996, except there is now no possible
truncation in makedev() itself. Also fix nearby style bugs.
kern/vfs_syscalls.c:
As for freebsd32. Also update the sysctl description to include file
numbers, and change it to describe device ids as device numbers.
sys/types.h:
Use inline functions (wrapped by macros) since the expressions are now
a bit too complicated for plain macros. Describe the encoding and
some of the reasons for it. 16-bit compatibility didn't leave many
reasonable choices for the 32-bit encoding, and 32-bit compatibility
doesn't leave many reasonable choices for the 64-bit encoding. My
choice is to put the 8 new minor bits in the low 8 bits of the top 32
bits. This minimizes discontiguities.
Reviewed by: kib (except for rewrite of the comment in linux_stats.c)
This code merge adds a pNFS service to the NFSv4.1 server. Although it is
a large commit it should not affect behaviour for a non-pNFS NFS server.
Some documentation on how this works can be found at:
http://people.freebsd.org/~rmacklem/pnfs-planb-setup.txt
and will hopefully be turned into a proper document soon.
This is a merge of the kernel code. Userland and man page changes will
come soon, once the dust settles on this merge.
It has passed a "make universe", so I hope it will not cause build problems.
It also adds NFSv4.1 server support for the "current stateid".
Here is a brief overview of the pNFS service:
A pNFS service separates the Read/Write oeprations from all the other NFSv4.1
Metadata operations. It is hoped that this separation allows a pNFS service
to be configured that exceeds the limits of a single NFS server for either
storage capacity and/or I/O bandwidth.
It is possible to configure mirroring within the data servers (DSs) so that
the data storage file for an MDS file will be mirrored on two or more of
the DSs.
When this is used, failure of a DS will not stop the pNFS service and a
failed DS can be recovered once repaired while the pNFS service continues
to operate. Although two way mirroring would be the norm, it is possible
to set a mirroring level of up to four or the number of DSs, whichever is
less.
The Metadata server will always be a single point of failure,
just as a single NFS server is.
A Plan B pNFS service consists of a single MetaData Server (MDS) and K
Data Servers (DS), all of which are recent FreeBSD systems.
Clients will mount the MDS as they would a single NFS server.
When files are created, the MDS creates a file tree identical to what a
single NFS server creates, except that all the regular (VREG) files will
be empty. As such, if you look at the exported tree on the MDS directly
on the MDS server (not via an NFS mount), the files will all be of size 0.
Each of these files will also have two extended attributes in the system
attribute name space:
pnfsd.dsfile - This extended attrbute stores the information that
the MDS needs to find the data storage file(s) on DS(s) for this file.
pnfsd.dsattr - This extended attribute stores the Size, AccessTime, ModifyTime
and Change attributes for the file, so that the MDS doesn't need to
acquire the attributes from the DS for every Getattr operation.
For each regular (VREG) file, the MDS creates a data storage file on one
(or more if mirroring is enabled) of the DSs in one of the "dsNN"
subdirectories. The name of this file is the file handle
of the file on the MDS in hexadecimal so that the name is unique.
The DSs use subdirectories named "ds0" to "dsN" so that no one directory
gets too large. The value of "N" is set via the sysctl vfs.nfsd.dsdirsize
on the MDS, with the default being 20.
For production servers that will store a lot of files, this value should
probably be much larger.
It can be increased when the "nfsd" daemon is not running on the MDS,
once the "dsK" directories are created.
For pNFS aware NFSv4.1 clients, the FreeBSD server will return two pieces
of information to the client that allows it to do I/O directly to the DS.
DeviceInfo - This is relatively static information that defines what a DS
is. The critical bits of information returned by the FreeBSD
server is the IP address of the DS and, for the Flexible
File layout, that NFSv4.1 is to be used and that it is
"tightly coupled".
There is a "deviceid" which identifies the DeviceInfo.
Layout - This is per file and can be recalled by the server when it
is no longer valid. For the FreeBSD server, there is support
for two types of layout, call File and Flexible File layout.
Both allow the client to do I/O on the DS via NFSv4.1 I/O
operations. The Flexible File layout is a more recent variant
that allows specification of mirrors, where the client is
expected to do writes to all mirrors to maintain them in a
consistent state. The Flexible File layout also allows the
client to report I/O errors for a DS back to the MDS.
The Flexible File layout supports two variants referred to as
"tightly coupled" vs "loosely coupled". The FreeBSD server always
uses the "tightly coupled" variant where the client uses the
same credentials to do I/O on the DS as it would on the MDS.
For the "loosely coupled" variant, the layout specifies a
synthetic user/group that the client uses to do I/O on the DS.
The FreeBSD server does not do striping and always returns
layouts for the entire file. The critical information in a layout
is Read vs Read/Writea and DeviceID(s) that identify which
DS(s) the data is stored on.
At this time, the MDS generates File Layout layouts to NFSv4.1 clients
that know how to do pNFS for the non-mirrored DS case unless the sysctl
vfs.nfsd.default_flexfile is set non-zero, in which case Flexible File
layouts are generated.
The mirrored DS configuration always generates Flexible File layouts.
For NFS clients that do not support NFSv4.1 pNFS, all I/O operations
are done against the MDS which acts as a proxy for the appropriate DS(s).
When the MDS receives an I/O RPC, it will do the RPC on the DS as a proxy.
If the DS is on the same machine, the MDS/DS will do the RPC on the DS as
a proxy and so on, until the machine runs out of some resource, such as
session slots or mbufs.
As such, DSs must be separate systems from the MDS.
Tested by: james.rose@framestore.com
Relnotes: yes
There were a couple of cases in newnfs_request() that it assumed that it
was an NFSv4.1 mount with a session. This should always be the case when
a Sequence operation is in the reply or the server replies NFSERR_BADSESSION.
However, if a server was broken and sent an erroneous reply, these safety
belt checks should avoid trouble.
The one check required a small tweak to nfsmnt_mdssession() so that it
returns NULL when there is no session instead of the offset of the field
in the structure (0x8 for i386).
This patch should have no effect on normal operation of the client.
Found by inspection during pNFS server development.
MFC after: 2 weeks
The Flexible File layout case wasn't handled by LayoutRecall callbacks
because it just checked for File layout and returned NFSERR_NOMATCHLAYOUT
otherwise. This patch adds the Flexible File layout handling.
Found during testing of the pNFS server.
MFC after: 2 weeks
These macros were added because they were used by the pNFS server last
year. However, they are no longer used by the pNFS server code and
might as well be deleted.
This is a partial reversion of r326735.
NFSDEV_MIRRORSTR was defined for the pNFS server, but has not been used,
so this patch deletes it. It also cleans up the comment and hopefully
makes it more readable.
gcc8 warns that "verf" was set but not used. This was because the code
that uses it is disabled via a "#if 0".
This patch adds a "#if 0" to the variable's declaration and assignment
to get rid of the warning.
This way the code could be re-enabled without difficulty.
Requested by: mmacy
MFC after: 2 weeks
The intent was that the default would be based on number of CPUs, but the
code disabled using taskqueue() by default.
This code is only executed when mounting a NFSv4.1 server that supports the
Flexible File layout for pNFS and, since such servers are rare, this change
shouldn't result in a POLA violation.
(The FreeBSD pNFS server is still a project and the only other one that
uses Flexible File layout is being developed by Primary Data and I don't
know if they have even shipped any to customers yet.)
Found while testing the pNFS server.
Under some fairly unusual circumstances, the Linux NFSv4.1 client is
doing a BindConnectiontoSession operation for TCP connections.
It is also used by the ESXi6.5 NFSv4.1 client.
This patch adds this operation to the NFSv4.1 server.
Reported by: andreas.nagy@frequentis.com
Tested by: andreas.nagy@frequentis.com
MFC after: 2 weeks
If a client did a DestroySession on a session while it was still in use,
the server might try to use the session structure after it is free'd.
I think the client has violated RFC5661 if it does this, but this patch
makes DestroySession block all other nfsd threads so no thread could
be using the session when it is free'd. After the DestroySession, nfsd
threads will not be able to find the session. The patch also adds a check
for nd_sessionid being set, although if that was not the case it would have
been all 0s and unlikely to have a false match.
This might fix the crashes described in PR#228497 for the FreeNAS server.
PR: 228497
MFC after: 1 week
The sleep for I/O completion during an NFSv4.1 pNFS layout recall used
the wrong event value and could result in the "[nfscl]" thread hung
for the mount.
This patch fixes the event to be the correct.
This bug will only affect NFSv4.1 pnfs mounts and only when the server
does a layout recall callback, so it won't affect many. Without the patch,
a mount without the "pnfs" option will avoid the problem.
Found during testing of the pNFS server.
MFC after: 1 week
Since NFSv4.1 clients normally create a single session which supports
both fore and back channels, it is unlikely that a callback will fail
due to a lack of a back channel.
However, if this failure occurred, the session wasn't being dereferenced
and would never be free'd.
Found by inspection during pNFS server development.
Tested by: andreas.nagy@frequentis.com
MFC after: 2 months
(https://svnweb.freebsd.org/base?view=revision&revision=304232)
converting clrbuf() (which clears the entire buffer) to vfs_bio_clrbuf()
(which clears only the new pages that have been added to the buffer).
Failure to properly remove pages from the buffer cache can make
pages that appear not to need clearing to actually have bad random
data in them. See for example base r304232
(https://svnweb.freebsd.org/base?view=revision&revision=304232)
which noted the need to set B_INVAL and B_NOCACHE as well as clear
the B_CACHE flag before calling brelse() to release the buffer.
Rather than trying to find all the incomplete brelse() calls, it
is simpler, though more slightly expensive, to simply clear the
entire buffer when it is newly allocated.
PR: 213507
Submitted by: Damjan Jovanovic
Reviewed by: kib
The NFSv4 protocol requires that the server only allow reclaim of state
and not issue any new open/lock state for a grace period after booting.
The NFSv4.0 protocol required this grace period to be greater than the
lease duration (over 2minutes). For NFSv4.1, the client tells the server
that it has done reclaiming state by doing a ReclaimComplete operation.
If all NFSv4 clients are NFSv4.1, the grace period can end once all the
clients have done ReclaimComplete, shortening the time period considerably.
This patch does this. If there are any NFSv4.0 mounts, the grace period
will still be over 2minutes.
This change is only an optimization and does not affect correct operation.
Tested by: andreas.nagy@frequentis.com
MFC after: 2 months
In the reply to an ExchangeID operation, the NFSv4.1 server returns a
"scope" value (eir_server_scope). If this value is the same, it indicates
that two servers share state, which is never the case for FreeBSD servers.
As such, the value needs to be unique and it was without this patch.
However, I just found out that it is not supposed to change when the
server reboots and without this patch, it did change.
This patch fixes eir_server_scope so that it does not change when the
server is rebooted.
The only affect not having this patch has is that Linux clients don't
reclaim opens and locks after a server reboot, which meant they lost
any byte range locks held before the server rebooted.
It only affects NFSv4.1 mounts and the FreeBSD NFSv4.1 client was not
affected by this bug.
MFC after: 1 week
For a fairly rare case of a client doing an ExchangeID after a hard reboot,
the old confirmed clientid still exists, but some clients use a new
co_verifier. For this case, the server was not freeing up the sessions on
the old confirmed clientid.
This patch fixes this case. It also adds two LIST_INIT() macros, which are
actually no-ops, since the structure is malloc()d with M_ZERO so the pointer
is already set to NULL.
It should have minimal impact, since the only way I could exercise this
code path was by doing a hard power cycle (pulling the plus) on a machine
running Linux with a NFSv4.1 mount on the server.
Originally spotted during testing of the ESXi 6.5 client.
Tested by: andreas.nagy@frequentis.com
MFC after: 2 months
When an NFSv4.1 session is busy due to a callback being in progress,
nfsrv_freesession() should return NFSERR_BACKCHANBUSY instead of NFS_OK.
The only effect this has is that the DestroySession operation will report
the failure for this case and this probably has little or no effect on a
client. Spotted by inspection and no failures related to this have been
reported.
MFC after: 2 months
The Linux client now uses the TestStateID operation, so this patch adds
support for it to the NFSv4.1 server. The FreeBSD client never uses this
operation, so it should not be affected.
MFC after: 2 months
- Add macros to allow preinitialization of cap_rights_t.
- Convert most commonly used code paths to use preinitialized cap_rights_t.
A 3.6% speedup in fstat was measured with this change.
Reported by: mjg
Reviewed by: oshogbo
Approved by: sbruno
MFC after: 1 month
Most filesystems, with the notable exceptions of msdosfs and autofs use
only vfs_timestamp() to read the current time. This has the benefit of
configurable granularity (using the vfs.timestamp_precision sysctl).
For convenience, use it on msdosfs too.
Submitted by: Damjan Jovanovic
Differential Revision: https://reviews.freebsd.org/D15297
by doing most of the work in a new function prison_add_vfs in kern_jail.c
Now a jail-enabled filesystem need only mark itself with VFCF_JAIL, and
the rest is taken care of. This includes adding a jail parameter like
allow.mount.foofs, and a sysctl like security.jail.mount_foofs_allowed.
Both of these used to be a static list of known filesystems, with
predefined permission bits.
Reviewed by: kib
Differential Revision: D14681
This fixes a regression that happened in r120492 (2003) where libkiconv
was introduced and we went from checking unlen to checking for '\0'.
PR: 111843
Patch by: Damjan Jovanovic
MFC after: 1 week
This patch adds two missing LIST_INIT()s. Found by inspection.
In practice, these are currently no-ops, since the structure they are
in is malloc'd with M_ZERO and all LIST_INIT does is set the pointer
in the list head to NULL. (In other words, the M_ZERO has already
correctly initialized it.)
MFC after: 2 months
Using a pointer after setting it NULL is probably not a good plan.
Spotted by inspection during changes for Flexible File Layout Ioerr handling.
This code path obviously isn't normally executed.
MFC after: 1 week
The NFSv4.1 RFC specifies that the OPEN_SHARE_ACCESS_WANT bits can be set
in the OpenDowngrade share_access argument and are basically ignored.
I do not know of a extant NFSv4.1 client that does this, but this little
patch fixes it just in case.
It also changes the error from NFSERR_BADXDR to NFSERR_INVAL since the NFSv4.1
RFC specifies this as the error to be returned if bogus bits are set.
(The NFSv4.0 RFC didn't specify any error for this, so the error reply can
be changed for NFSv4.0 as well.)
Found by inspection while looking at a problem with OpenDowngrade reported
for the ESXi 6.5 NFSv4.1 client.
Reported by: andreas.nagy@frequentis.com
PR: 227214
MFC after: 1 week
opt_compat.h is mentioned in nearly 180 files. In-progress network
driver compabibility improvements may add over 100 more so this is
closer to "just about everywhere" than "only some files" per the
guidance in sys/conf/options.
Keep COMPAT_LINUX32 in opt_compat.h as it is confined to a subset of
sys/compat/linux/*.c. A fake _COMPAT_LINUX option ensure opt_compat.h
is created on all architectures.
Move COMPAT_LINUXKPI to opt_dontuse.h as it is only used to control the
set of compiled files.
Reviewed by: kib, cem, jhb, jtl
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D14941