- When adding new waiting threads to the waitlist for an object,
use INSERT_LIST_TAIL() instead of INSERT_LIST_HEAD() so that new
waiters go at the end of the list instead of the beginning. When we
wake up a synchronization object, only the first waiter is awakened,
and this needs to be the first thread that actually waited on the object.
- Correct missing semicolon in INSERT_LIST_TAIL() macro.
- Implement lookaside lists correctly. Note that the Am1771 driver
uses lookaside lists to manage shared memory (i.e. DMAable) buffers
by specifying its own alloc and free routines. The Microsoft documentation
says you should avoid doing this, but apparently this did not deter
the developers at AMD from doing it anyway.
With these changes (which are the result of two straight days of almost
non-stop debugging), I think I finally have the object/thread handling
semantics implemented correctly. The Am1771 driver no longer crashes
unexpectedly during association or bringing the interface up.
802.11b chipset work. This chip is present on the SMC2602W version 3
NIC, which is what was used for testing. This driver creates kernel
threads (12 of them!) for various purposes, and required the following
routines:
PsCreateSystemThread()
PsTerminateSystemThread()
KeInitializeEvent()
KeSetEvent()
KeResetEvent()
KeInitializeMutex()
KeReleaseMutex()
KeWaitForSingleObject()
KeWaitForMultipleObjects()
IoGetDeviceProperty()
and several more. Also, this driver abuses the fact that NDIS events
and timers are actually Windows events and timers, and uses NDIS events
with KeWaitForSingleObject(). The NDIS event routines have been rewritten
to interface with the ntoskrnl module. Many routines with incorrect
prototypes have been cleaned up.
Also, this driver puts jobs on the NDIS taskqueue (via NdisScheduleWorkItem())
which block on events, and this interferes with the operation of
NdisMAllocateSharedMemoryAsync(), which was also being put on the
NDIS taskqueue. To avoid the deadlock, NdisMAllocateSharedMemoryAsync()
is now performed in the NDIS SWI thread instead.
There's still room for some cleanups here, and I really should implement
KeInitializeTimer() and friends.
the definitions for NDIS_BUS_SPACE_IO and NDIS_BUS_SPACE_MEM logically
belong in hal_var.h. At least, that's my story, and I'm sticking to it.
Also, remove definition of __stdcall from if_ndis.c now that it's pulled
in from pe_var.h.
unexpected interrupts. If an interrupt is triggered and we're not
finished initializing yet, bail. If we have finished initializing,
but IFF_UP isn't set yet, drain the interrupt with ndis_intr() or
ndis_disable_intr() as appropriate, then return _without_ scheduling
ndis_intrtask().
In kern_ndis.c:ndis_load_driver() only relocate/dynalink a given driver
image once. Trying to relocate an image that's already been relocated
will trash the image. We poison a part of the image header that we
don't otherwise need with a magic value to indicate it's already been
fixed up. This fixes the case where there are multiple units of the
same kind of device.
these add support for listing BSSIDs via wicontrol -l. I added code
to call OID_802_11_BSSID_LIST_SCAN to allow scanning for any nearby
wirelsss nets.
Convert from using individual mutexes to a mutex pool, created in
subr_ndis.c. This deals with the problem of drivers creating locks
in their DriverEntry() routines which might get trashed later.
Put some messages under IFF_DEBUG.
in subr_ndis and subr_ntoskrnl. This is faster and avoids potential
LOR whinage from witness (an LOR couldn't happen with the old code
since the interlocked inc/dec routines could not sleep with a lock
held, but this will keep witness happy and it's more efficient
anyway. I think.)
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
the NTx86 section decoration).
subr_ndis.c: correct the behavior of ndis_query_resources(): if the
caller doesn't provide enough space to return the resources, tell it
how much it needs to provide and return an error.
subr_hal.c & subr_ntoskrnl.c: implement/stub a bunch of new routines;
ntoskrnl:
KefAcquireSpinLockAtDpcLevel
KefReleaseSpinLockFromDpcLevel
MmMapLockedPages
InterlockedDecrement
InterlockedIncrement
IoFreeMdl
KeInitializeSpinLock
HAL:
KfReleaseSpinLock
KeGetCurrentIrql
KfAcquireSpinLock
Lastly, correct spelling of "_aullshr" in the ntoskrnl functable.
peter and jhb: use __volatile__ to prevent gcc from possibly reordering
code, use a null inline instruction instead of a no-op movl (I would
have done this myself if I knew it was allowed) and combine two register
assignments into a single asm statement.
- if_ndis.c: set the NDIS_STATUS_PENDING flag on all outgoing packets
in ndis_start(), make the resource allocation code a little smarter
about how it selects the altmem range, correct a lock order reversal
in ndis_tick().
- Fix ndis_time().
- Implement NdisGetSystemUpTime().
- Implement RtlCopyUnicodeString() and RtlUnicodeStringToAnsiString().
- In ndis_getstate_80211(), use sc->ndis_link to determine connect
status.
Submitted by: Brian Feldman <green@freebsd.org>
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page