datagram-only protocols, such as UDP. This version removes use of
sblock(), which is not required due to an inability to interlace data
improperly with datagrams, as well as avoiding some of the larger loops
and state management that don't apply on datagram sockets.
This is experimental code, so hook it up only for UDPv4 for testing; if
there are problems we may need to revise it or turn it off by default,
but it offers *significant* performance improvements for threaded UDP
applications such as BIND9, nsd, and memcached using UDP.
Tested by: kris, ps
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
Removed dead code that assumed that M_TRYWAIT can return NULL; it's not true
since the advent of MBUMA.
Reviewed by: arch
There are ongoing disputes as to whether we want to switch to directly using
UMA flags M_WAITOK/M_NOWAIT for mbuf(9) allocation.
maxsockets limit, not maxfiles limit. The question remains why those
limits are handled differently (with error code for maxfiles but with
sleep for maxsokets), but those would be addressed in a separate commit
if necessary.
Requested by: rwhatson, jeff
Otherwise the parameter is no-op, since zone by default limits number
of descriptors to some 12K entries. Attempt to allocate more ends up
sleeping on zonelimit.
MFC after: 2 weeks
- Expose sbrelease_internal(), a variant of sbrelease() with no
expectations about the validity of locks in the socket buffer.
- Use sbrelease_internel() in sorflush(), and as a result avoid intializing
and destroying a socket buffer lock for the temporary stack copy of the
actual buffer, asb.
- Add a comment indicating why we do what we do, and remove an XXX since
things have gotten less ugly in sorflush() lately.
This makes socket close cleaner, and possibly also marginally faster.
MFC after: 3 weeks
read socket buffers in shutdown() and close():
- Call socantrcvmore() before sblock() to dislodge any threads that
might be sleeping (potentially indefinitely) while holding sblock(),
such as a thread blocked in recv().
- Flag the sblock() call as non-interruptible so that a signal
delivered to the thread calling sorflush() doesn't cause sblock() to
fail. The sblock() is required to ensure that all other socket
consumer threads have, in fact, left, and do not enter, the socket
buffer until we're done flushin it.
To implement the latter, change the 'flags' argument to sblock() to
accept two flags, SBL_WAIT and SBL_NOINTR, rather than one M_WAITOK
flag. When SBL_NOINTR is set, it forces a non-interruptible sx
acquisition, regardless of the setting of the disposition of SB_NOINTR
on the socket buffer; without this change it would be possible for
another thread to clear SB_NOINTR between when the socket buffer mutex
is released and sblock() is invoked.
Reviewed by: bz, kmacy
Reported by: Jos Backus <jos at catnook dot com>
from Mac OS X Leopard--rationalize naming for entry points to
the following general forms:
mac_<object>_<method/action>
mac_<object>_check_<method/action>
The previous naming scheme was inconsistent and mostly
reversed from the new scheme. Also, make object types more
consistent and remove spaces from object types that contain
multiple parts ("posix_sem" -> "posixsem") to make mechanical
parsing easier. Introduce a new "netinet" object type for
certain IPv4/IPv6-related methods. Also simplify, slightly,
some entry point names.
All MAC policy modules will need to be recompiled, and modules
not updates as part of this commit will need to be modified to
conform to the new KPI.
Sponsored by: SPARTA (original patches against Mac OS X)
Obtained from: TrustedBSD Project, Apple Computer
sysctl_handle_int is not sizeof the int type you want to export.
The type must always be an int or an unsigned int.
Remove the instances where a sizeof(variable) is passed to stop
people accidently cut and pasting these examples.
In a few places this was sysctl_handle_int was being used on 64 bit
types, which would truncate the value to be exported. In these
cases use sysctl_handle_quad to export them and change the format
to Q so that sysctl(1) can still print them.
td_ru. This removes the requirement for per-process synchronization in
statclock() and mi_switch(). This was previously supported by
sched_lock which is going away. All modifications to rusage are now
done in the context of the owning thread. reads proceed without locks.
- Aggregate exiting threads rusage in thread_exit() such that the exiting
thread's rusage is not lost.
- Provide a new routine, rufetch() to fetch an aggregate of all rusage
structures from all threads in a process. This routine must be used
in any place requiring a rusage from a process prior to it's exit. The
exited process's rusage is still available via p_ru.
- Aggregate tick statistics only on demand via rufetch() or when a thread
exits. Tick statistics are kept in the thread and protected by sched_lock
until it exits.
Initial patch by: attilio
Reviewed by: attilio, bde (some objections), arch (mostly silent)
on each socket buffer with the socket buffer's mutex. This sleep lock is
used to serialize I/O on sockets in order to prevent I/O interlacing.
This change replaces the custom sleep lock with an sx(9) lock, which
results in marginally better performance, better handling of contention
during simultaneous socket I/O across multiple threads, and a cleaner
separation between the different layers of locking in socket buffers.
Specifically, the socket buffer mutex is now solely responsible for
serializing simultaneous operation on the socket buffer data structure,
and not for I/O serialization.
While here, fix two historic bugs:
(1) a bug allowing I/O to be occasionally interlaced during long I/O
operations (discovere by Isilon).
(2) a bug in which failed non-blocking acquisition of the socket buffer
I/O serialization lock might be ignored (discovered by sam).
SCTP portion of this patch submitted by rrs.
other C files:
- Move sbcreatecontrol() and sbtoxsockbuf() to uipc_sockbuf.c. While
sbcreatecontrol() is really an mbuf allocation routine, it does its work
with awareness of the layout of socket buffer memory.
- Move pru_*() protocol switch stubs to uipc_socket.c where the non-stub
versions of several of these functions live. Likewise, move socket state
transition calls (soisconnecting(), etc) to uipc_socket.c. Moveo
sodupsockaddr() and sotoxsocket().
calling pru_detach we can be absolutely sure, that we don't have any
references to the socket in the stack.
This closes race between lockless sbdestroy() and data arriving on socket.
Reviewed by: rwatson
sosend_copyin().
- Use M_WAITOK instead of M_TRYWAIT in sosend_copyin().
- Don't check for NULL from M_WAITOK and return ENOBUFS.
M_WAITOK/M_TRYWAIT allocations don't fail with NULL.
Reviewed by: andre
Requested by: andre (2)
call which can easily lock up a system otherwise; instead,
return ENOBUFS as documented in a manpage, thus reverting
us to the FreeBSD 4.x behavior.
Reviewed by: rwatson
MFC after: 2 weeks
control data but no payload data is passed.
Change m_uiotombuf() to return at least one empty mbuf if the requested
length was zero. Add comment to sosend_dgram and sosend_generic().
Diagnoses by: jhb
Regression test by: rwatson
Pointy hat to. andre
- Sort by date in license blocks, oldest copyright first.
- All rights reserved after all copyrights, not just the first.
- Use (c) to be consistent with other entries.
MFC after: 3 days
mbuf is dropped, to preserve the invariant in the PR_ADDR case.
Add a regression test to detect this condition, but do not hook it
up to the build for now.
PR: kern/38495
Submitted by: James Juran
Reviewed by: sam, rwatson
Obtained from: NetBSD
MFC after: 2 weeks
listening socket after the pass that cleans those queues. This
results in these connections being orphaned (and leaked). The fix
is to clean up the so queues after detaching the socket from the
protocol. Thanks to ups and jhb for discussions and a thorough code
review.
to do the userland to kernel copying in sosend_generic() and sosend_dgram().
sosend_copyin() is retained for ZERO_COPY_SOCKETS which are not yet supported
by m_uiotombuf().
Benchmaring shows significant improvements (95% confidence):
66% less cpu (or 2.9 times better) with new sosend vs. old sosend (non-TSO)
65% less cpu (or 2.8 times better) with new sosend vs. old sosend (TSO)
(Sender AMD Opteron 852 (2.6GHz) with em(4) PCI-X-133 interface and receiver
DELL Poweredge SC1425 P-IV Xeon 3.2GHz with em(4) LOM connected back to back
at 1000Base-TX full duplex.)
Sponsored by: TCP/IP Optimization Fundraise 2005
MFC after: 3 month
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
the entire record when a non-data mbuf is removed in the soreceive() path.
This only triggers a panic directly when compiled with INVARIANTS.
PR: 38495
Submitted by: James Juran
MFC after: 1 week
inherit all settings and options except listen specific options.
Add the missing send/receive timeouts and low watermarks.
Remove inheritance of the field so_timeo which is unused.
Noticed by: phk
Reviewed by: rwatson
Sponsored by: TCP/IP Optimization Fundraise 2005
MFC after: 3 days
sofree(), as a number of protocols expect to be able to call
soisdisconnected() during detach. That may not be a good assumption,
but until I'm sure if it's a good assumption or not, allow it.
eliminating a second set of identical mutex operations at the bottom.
This allows brief exceeding of the max sockets limit, but only by
sockets in the last stages of being torn down.
longer referenced by other threads (hence our freeing it), we don't need
to set the can't send and can't receive flags, wake up the consumers,
perform two levels of locking, etc. Implement a fast-path teardown,
sbdestroy(), which flushes and releases each socket buffer. A manual
dom_dispose of the receive buffer is still required explicitly to GC
any in-flight file descriptors, etc, before flushing the buffer.
This results in a 9% UP performance improvement and 16% SMP performance
improvement on a tight loop of socket();close(); in micro-benchmarking,
but will likely also affect CPU-bound macro-benchmark performance.
soreceive(), and sopoll(), which are wrappers for pru_sosend,
pru_soreceive, and pru_sopoll, and are now used univerally by socket
consumers rather than either directly invoking the old so*() functions
or directly invoking the protocol switch method (about an even split
prior to this commit).
This completes an architectural change that was begun in 1996 to permit
protocols to provide substitute implementations, as now used by UDP.
Consumers now uniformly invoke sosend(), soreceive(), and sopoll() to
perform these operations on sockets -- in particular, distributed file
systems and socket system calls.
Architectural head nod: sam, gnn, wollman
function, pru_close, to notify protocols that the file descriptor or
other consumer of a socket is closing the socket. pru_abort is now a
notification of close also, and no longer detaches. pru_detach is no
longer used to notify of close, and will be called during socket
tear-down by sofree() when all references to a socket evaporate after
an earlier call to abort or close the socket. This means detach is now
an unconditional teardown of a socket, whereas previously sockets could
persist after detach of the protocol retained a reference.
This faciliates sharing mutexes between layers of the network stack as
the mutex is required during the checking and removal of references at
the head of sofree(). With this change, pru_detach can now assume that
the mutex will no longer be required by the socket layer after
completion, whereas before this was not necessarily true.
Reviewed by: gnn
using sorele() and the full tear-down path. Since protocol state
allocation failed, this is not required (and is arguably undesirable).
This matches the behavior of sonewconn() under the same circumstances.
- Move sonewconn(), which creates new sockets for incoming connections on
listen sockets, so that all socket allocate code is together in
uipc_socket.c.
- Move 'maxsockets' and associated sysctls to uipc_socket.c with the
socket allocation code.
- Move kern.ipc sysctl node to uipc_socket.c, add a SYSCTL_DECL() for it
to sysctl.h and remove lots of scattered implementations in various
IPC modules.
- Sort sodealloc() after soalloc() in uipc_socket.c for dependency order
reasons. Statisticize soalloc() and sodealloc() as they are now
required only in uipc_socket.c, and are internal to the socket
implementation.
After this change, socket allocation and deallocation is entirely
centralized in one file, and uipc_socket2.c consists entirely of socket
buffer manipulation and default protocol switch functions.
MFC after: 1 month