- Extract suspension check into sig_ast_checksusp() helper.
- Extract signal check and calculation of the interruption errno into
sig_ast_needsigchk() helper.
The helpers are moved to kern_sig.c which is the proper place for
signal-related code.
Improve control flow in sleepq_catch_signals(), to handle ret == 0
(can sleep) and ret != 0 (interrupted) only once, by separating
checking code into sleepq_check_ast_sq_locked(), which return value is
interpreted at single location.
Reviewed by: markj
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Differential revision: https://reviews.freebsd.org/D26628
purpose of epoch_trace() and for calling subsequent panic, but to keep
code fully under INVARIANTS, so don't use bare function call to panic().
However, at the last stage of review a true value slipped in, while
always false was assumed. I checked that in email archive with kib@.
Noticed by: trasz
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.
This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.
Mark all obvious cases as MPSAFE. All entries that haven't been marked
as MPSAFE before are by default marked as NEEDGIANT
Approved by: kib (mentor, blanket)
Commented by: kib, gallatin, melifaro
Differential Revision: https://reviews.freebsd.org/D23718
After r355784 the td_oncpu field is no longer synchronized by the thread
lock, so the stack capture interrupt cannot be delievered precisely.
Fix this using a loop which drops the thread lock and restarts if the
wrong thread was sampled from the stack capture interrupt handler.
Change the implementation to use a regular interrupt instead of an NMI.
Now that we drop the thread lock, there is no advantage to the latter.
Simplify the KPIs. Remove stack_save_td_running() and add a return
value to stack_save_td(). On platforms that do not support stack
capture of running threads, stack_save_td() returns EOPNOTSUPP. If the
target thread is running in user mode, stack_save_td() returns EBUSY.
Reviewed by: kib
Reported by: mjg, pho
Tested by: pho
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D23355
_sleep(9), wakeup(9), sleepqueue(9), et al do not dereference or modify the
channel pointers provided in any way; they are merely used as intptrs into a
dictionary structure to match waiters with wakers. Correctly annotate this
such that _sleep() and wakeup() may be used on const pointers without
invoking ugly patterns like __DECONST(). Plumb const through all of the
underlying sleepqueue bits.
No functional change.
Reviewed by: rlibby
Discussed with: kib, markj
Differential Revision: https://reviews.freebsd.org/D22914
Don't hold the scheduler lock while doing context switches. Instead we
unlock after selecting the new thread and switch within a spinlock
section leaving interrupts and preemption disabled to prevent local
concurrency. This means that mi_switch() is entered with the thread
locked but returns without. This dramatically simplifies scheduler
locking because we will not hold the schedlock while spinning on
blocked lock in switch.
This change has not been made to 4BSD but in principle it would be
more straightforward.
Discussed with: markj
Reviewed by: kib
Tested by: pho
Differential Revision: https://reviews.freebsd.org/D22778
Do all sleepqueue post-processing in sleepq_remove_thread() so that we
do not require the thread lock after a context switch.
Reviewed by: jhb, kib
Differential Revision: https://reviews.freebsd.org/D22745
Eliminate recursion from most thread_lock consumers. Return from
sched_add() without the thread_lock held. This eliminates unnecessary
atomics and lock word loads as well as reducing the hold time for
scheduler locks. This will eventually allow for lockless remote adds.
Discussed with: kib
Reviewed by: jhb
Tested by: pho
Differential Revision: https://reviews.freebsd.org/D22626
Epoch itself doesn't rely on the counter and it is provided
merely for sleeping subsystems to check it.
- In functions that sleep use THREAD_CAN_SLEEP() to assert
correctness. With EPOCH_TRACE compiled print epoch info.
- _sleep() was a wrong place to put the assertion for epoch,
right place is sleepq_add(), as there ways to call the
latter bypassing _sleep().
- Do not increase td_no_sleeping in non-preemptible epochs.
The critical section would trigger all possible safeguards,
no sleeping counter is extraneous.
Reviewed by: kib
wakeup_one() and underlying sleepq_signal() spend additional time trying
to be fair, waking thread with highest priority, sleeping longest time.
But in case of taskqueue there are many absolutely identical threads, and
any fairness between them is quite pointless. It makes even worse, since
round-robin wakeups not only make previous CPU affinity in scheduler quite
useless, but also hide from user chance to see CPU bottlenecks, when
sequential workload with one request at a time looks evenly distributed
between multiple threads.
This change adds new SLEEPQ_UNFAIR flag to sleepq_signal(), making it wakeup
thread that went to sleep last, but no longer in context switch (to avoid
immediate spinning on the thread lock). On top of that new wakeup_any()
function is added, equivalent to wakeup_one(), but setting the flag.
On top of that taskqueue(9) is switchied to wakeup_any() to wakeup its
threads.
As result, on 72-core Xeon v4 machine sequential ZFS write to 12 ZVOLs
with 16KB block size spend 34% less time in wakeup_any() and descendants
then it was spending in wakeup_one(), and total write throughput increased
by ~10% with the same as before CPU usage.
Reviewed by: markj, mmacy
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Differential Revision: https://reviews.freebsd.org/D20669
PT_ATTACH was consumed.
In particular, do not clear TDP_FSTP in ptracestop() if td_wchan is
non-NULL. Leave it to sleepq_catch_signal() to clear and convert zero
return code to EINTR.
Otherwise, per submitter report, if the PT_ATTACH SIGSTOP was
delivered right after the thread was added to the sleepqueue but not
yet really sleep, and cursig() caused debugger attach, the thread
sleeps instead of returning to the userspace boundary with EINTR.
PR: 231445
Reported by: Efi Weiss <valmarelox@gmail.com>
Reviewed by: markj
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Differential revision: https://reviews.freebsd.org/D20381
We may remove a sleepqueue from the hash table in
sleepq_resume_thread().
Reviewed by: kib
MFC after: 3 days
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D14847
This reduces noise when kernel is compiled by newer GCC versions,
such as one used by external toolchain ports.
Reviewed by: kib, andrew(sys/arm and sys/arm64), emaste(partial), erj(partial)
Reviewed by: jhb (sys/dev/pci/* sys/kern/vfs_aio.c and sys/kern/kern_synch.c)
Differential Revision: https://reviews.freebsd.org/D10385
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
While here cache-align chains.
This shortens longest found chain during poudriere -j 80 from 32 to 16.
Pushing this higher up will probably require allocation on boot.
properly dump all the sendqueues and not just the first one
History:
It appears that in the commit which introduced the code,
r165272, the array indexes of "sq_blocked[0]" and "td_name[i]"
were interchanged. In r180927 "td_name[i]" was corrected to
"td_name[0]", but "sq_blocked[0]" was left unchanged.
PR: 222624
Discussed with: kmacy @
MFC after: 1 week
Sponsored by: Mellanox Technologies
I moved this branch from github to a private server, and pulled from the
wrong one when committing r315280, so I failed to include two recent commits.
Thankfully, they were only cosmetic and were included in the review.
Specifically:
Add documentation, polish comments, and improve style(9).
Tested by: pho (r315280)
MFC after: 2 weeks
Sponsored by: Dell EMC
Differential Revision: https://reviews.freebsd.org/D9791
POSIX 2008 says this about clock_settime(2):
If the value of the CLOCK_REALTIME clock is set via clock_settime(),
the new value of the clock shall be used to determine the time
of expiration for absolute time services based upon the
CLOCK_REALTIME clock. This applies to the time at which armed
absolute timers expire. If the absolute time requested at the
invocation of such a time service is before the new value of
the clock, the time service shall expire immediately as if the
clock had reached the requested time normally.
Setting the value of the CLOCK_REALTIME clock via clock_settime()
shall have no effect on threads that are blocked waiting for
a relative time service based upon this clock, including the
nanosleep() function; nor on the expiration of relative timers
based upon this clock. Consequently, these time services shall
expire when the requested relative interval elapses, independently
of the new or old value of the clock.
When the real-time clock is adjusted, such as by clock_settime(3),
wake any threads sleeping until an absolute real-clock time.
Such a sleep is indicated by a non-zero td_rtcgen. The sleep functions
will set that field to zero and return zero to tell the caller
to reevaluate its sleep duration based on the new value of the clock.
At present, this affects the following functions:
pthread_cond_timedwait(3)
pthread_mutex_timedlock(3)
pthread_rwlock_timedrdlock(3)
pthread_rwlock_timedwrlock(3)
sem_timedwait(3)
sem_clockwait_np(3)
I'm working on adding clock_nanosleep(2), which will also be affected.
Reported by: Sebastian Huber <sebastian.huber@embedded-brains.de>
Reviewed by: jhb, kib
MFC after: 2 weeks
Relnotes: yes
Sponsored by: Dell EMC
Differential Revision: https://reviews.freebsd.org/D9791
Since locks are dropped when a thread suspends, it's possible for another
thread to deliver a signal to the suspended thread. If the thread awakens from
suspension without checking for signals, it may go to sleep despite having
a pending signal that should wake it up. Therefore the suspension check is
done first, so any signals sent while suspended will be caught in the
subsequent signal check.
Reviewed by: kib
Approved by: kib (mentor)
MFC after: 2 weeks
Sponsored by: Dell EMC
Differential Revision: https://reviews.freebsd.org/D9530
The removal of TAILQ_FOREACH_SAFE introduced a small race: when the last
thread on a sleepqueue is awoken, it reclaims the sleepqueue and may begin
executing on a different CPU before sleepq_resume_thread() returns. This
leaves a window during which it may go back to sleep and incorrectly be
awoken again by the caller of sleepq_broadcast().
Reported and tested by: pho
MFC after: 3 days
Sponsored by: Dell EMC Isilon
The callout subsystem already handles early callouts and schedules
the first clock interrupt appropriately based on the currently pending
callouts. The one nit to fix was that callouts scheduled via C_HARDCLOCK
during early boot could fire too early once timers were enabled as the
per-CPU base time is always zero until timers are initialized. The change
in callout_when() handles this case by using the current uptime as the
base time of the callout during bootup if the per-CPU base time is zero.
Reviewed by: kib
MFC after: 2 weeks
Sponsored by: Netflix
specifics of callout KPI. Esp., do not depend on the exact interface
of callout_stop(9) return values.
The main change is that instead of requiring precise callouts, code
maintains absolute time to wake up. Callouts now should ensure that a
wake occurs at the requested moment, but we can tolerate both run-away
callout, and callout_stop(9) lying about running callout either way.
As consequence, it removes the constant source of the bugs where
sleepq_check_timeout() causes uninterruptible thread state where the
thread is detached from CPU, see e.g. r234952 and r296320.
Patch also removes dual meaning of the TDF_TIMEOUT flag, making code
(IMO much) simpler to reason about.
Tested by: pho
Reviewed by: jhb
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
Differential revision: https://reviews.freebsd.org/D7137
not scheduled -> scheduled -> running -> not scheduled. The API and the
manual page assume that, some comments in the code assume that, and looks
like some contributors to the code also did. The problem is that this
paradigm isn't true. A callout can be scheduled and running at the same
time, which makes API description ambigouous. In such case callout_stop()
family of functions/macros should return 1 and 0 at the same time, since it
successfully unscheduled future callout but the current one is running.
Before this change we returned 1 in such a case, with an exception that
if running callout was migrating we returned 0, unless CS_MIGRBLOCK was
specified.
With this change, we now return 0 in case if future callout was unscheduled,
but another one is still in action, indicating to API users that resources
are not yet safe to be freed.
However, the sleepqueue code relies on getting 1 return code in that case,
and there already was CS_MIGRBLOCK flag, that covered one of the edge cases.
In the new return path we will also use this flag, to keep sleepqueue safe.
Since the flag CS_MIGRBLOCK doesn't block migration and now isn't limited to
migration edge case, rename it to CS_EXECUTING.
This change fixes panics on a high loaded TCP server.
Reviewed by: jch, hselasky, rrs, kib
Approved by: re (gjb)
Differential Revision: https://reviews.freebsd.org/D7042
calculate appropriate return value for stops. Simplify the code by
using them.
Fix typo in sig_suspend_threads(). The thread which sleep must be
aborted is td2. (*)
In issignal(), when handling stopping signal for thread in
TD_SBDRY_INTR state, do not stop, this is wrong and fires assert.
This is yet another place where execution should be forced out of
SBDRY-protected region. For such case, return -1 from issignal() and
translate it to corresponding error code in sleepq_catch_signals().
Assert that other consumers of cursig() are not affected by the new
return value. (*)
Micro-optimize, mostly VFS and VOP methods, by avoiding calling the
functions when SIGDEFERSTOP_NOP non-change is requested. (**)
Reported and tested by: pho (*)
Requested by: bde (**)
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Approved by: re (gjb)
- Avoid a conditional branch on the return value of sleepq_resume_thread()
by ORing its return value into the boolean wakeup_swapper. This is
consistent with other sleepqueue functions which just pass this return
value to their caller.
- sleepq_resume_thread() unconditionally removes the thread from its queue,
so there's no need to maintain a pointer to the next element in the queue.
MFC after: 2 weeks
Previously, calls to *sleep() and cv_*wait*() immediately returned during
early boot. Instead, permit threads that request a sleep without a
timeout to sleep as wakeup() works during early boot. Sleeps with
timeouts are harder to emulate without working timers, so just punt and
panic explicitly if any thread tries to use those before timers are
working. Any threads that depend on timeouts should either wait until
SI_SUB_KICK_SCHEDULER to start or they should use DELAY() until timers
are available.
Until APs are started earlier this should be a no-op as other kthreads
shouldn't get a chance to start running until after timers are working
regardless of when they were created.
Reviewed by: kib
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D5724
This is several year's worth of fail point upgrades done at EMC Isilon. They
are interdependent enough that it makes sense to put a single diff up for them.
Primarily, we added:
- Changing all mainline execution paths to be lockless, which lets us use fail
points in more sleep-sensitive areas, and allows more parallel execution
- A number of additional commands, including 'pause' that lets us do some
interesting deterministic repros of race conditions
- The ability to dump the stacks of all threads sleeping on a fail point
- A number of other API changes to allow marking up the fail point's context in
the code, and firing callbacks before and after execution
- A man page update
Submitted by: Matthew Bryan <matthew.bryan@isilon.com>
Reviewed by: cem (earlier version), jhb, kib, pho
With feedback from: bdrewery
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D5427
but next invocation is cancelled while migrating,
sleepq_check_timeout() needs to be informed that the callout is
stopped. Otherwise the thread switches off CPU and never become
runnable, since running callout could have already raced with us,
while the migrating and cancelled callout could be one which is
expected to set TDP_TIMOFAIL flag for us. This contradicts with the
expected behaviour of callout_stop() for other callers, which
e.g. decrement references from the callout callbacks.
Add a new flag CS_MIGRBLOCK requesting report of the situation as
'successfully stopped'.
Reviewed by: jhb (previous version)
Tested by: cognet, pho
PR: 200992
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Differential revision: https://reviews.freebsd.org/D5221
FreeBSD developers need more time to review patches in the surrounding
areas like the TCP stack which are using MPSAFE callouts to restore
distribution of callouts on multiple CPUs.
Bump the __FreeBSD_version instead of reverting it.
Suggested by: kmacy, adrian, glebius and kib
Differential Revision: https://reviews.freebsd.org/D1438
- Close a migration race where callout_reset() failed to set the
CALLOUT_ACTIVE flag.
- Callout callback functions are now allowed to be protected by
spinlocks.
- Switching the callout CPU number cannot always be done on a
per-callout basis. See the updated timeout(9) manual page for more
information.
- The timeout(9) manual page has been updated to reflect how all the
functions inside the callout API are working. The manual page has
been made function oriented to make it easier to deduce how each of
the functions making up the callout API are working without having
to first read the whole manual page. Group all functions into a
handful of sections which should give a quick top-level overview
when the different functions should be used.
- The CALLOUT_SHAREDLOCK flag and its functionality has been removed
to reduce the complexity in the callout code and to avoid problems
about atomically stopping callouts via callout_stop(). If someone
needs it, it can be re-added. From my quick grep there are no
CALLOUT_SHAREDLOCK clients in the kernel.
- A new callout API function named "callout_drain_async()" has been
added. See the updated timeout(9) manual page for a complete
description.
- Update the callout clients in the "kern/" folder to use the callout
API properly, like cv_timedwait(). Previously there was some custom
sleepqueue code in the callout subsystem, which has been removed,
because we now allow callouts to be protected by spinlocks. This
allows us to tear down the callout like done with regular mutexes,
and a "td_slpmutex" has been added to "struct thread" to atomically
teardown the "td_slpcallout". Further the "TDF_TIMOFAIL" and
"SWT_SLEEPQTIMO" states can now be completely removed. Currently
they are marked as available and will be cleaned up in a follow up
commit.
- Bump the __FreeBSD_version to indicate kernel modules need
recompilation.
- There has been several reports that this patch "seems to squash a
serious bug leading to a callout timeout and panic".
Kernel build testing: all architectures were built
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D1438
Sponsored by: Mellanox Technologies
Reviewed by: jhb, adrian, sbruno and emaste
option, unbreak the lock tracing release semantic by embedding
calls to LOCKSTAT_PROFILE_RELEASE_LOCK() direclty in the inlined
version of the releasing functions for mutex, rwlock and sxlock.
Failing to do so skips the lockstat_probe_func invokation for
unlocking.
- As part of the LOCKSTAT support is inlined in mutex operation, for
kernel compiled without lock debugging options, potentially every
consumer must be compiled including opt_kdtrace.h.
Fix this by moving KDTRACE_HOOKS into opt_global.h and remove the
dependency by opt_kdtrace.h for all files, as now only KDTRACE_FRAMES
is linked there and it is only used as a compile-time stub [0].
[0] immediately shows some new bug as DTRACE-derived support for debug
in sfxge is broken and it was never really tested. As it was not
including correctly opt_kdtrace.h before it was never enabled so it
was kept broken for a while. Fix this by using a protection stub,
leaving sfxge driver authors the responsibility for fixing it
appropriately [1].
Sponsored by: EMC / Isilon storage division
Discussed with: rstone
[0] Reported by: rstone
[1] Discussed with: philip
calls to toggle TDF_SBDRY rather than passing PBDRY to individual sleep
calls.
- Remove the stop_allowed parameters from cursig() and issignal().
issignal() checks TDF_SBDRY directly.
- Remove the PBDRY and SLEEPQ_STOP_ON_BDRY flags.
Convert sleepqueue(9) bits to the new callout KPI. Take advantage of
the possibility to run callback directly from hw interrupt context.
Sponsored by: Google Summer of Code 2012, iXsystems inc.
Tested by: flo, marius, ian, markj, Fabian Keil
195702, 195703, and 195821 prevented a thread from suspending while holding
locks inside of NFS by forcing the thread to fail sleeps with EINTR or
ERESTART but defer the thread suspension to the user boundary. However,
this had the effect that stopping a process during an NFS request could
abort the request and trigger EINTR errors that were visible to userland
processes (previously the thread would have suspended and completed the
request once it was resumed).
This change instead effectively masks stop signals while in the NFS client.
It uses the existing TDF_SBDRY flag to effect this since SIGSTOP cannot
be masked directly. Also, instead of setting PBDRY on individual sleeps,
the NFS client now sets the TDF_SBDRY flag around each NFS request and
stop signals are masked for all sleeps during that region (the previous
change missed sleeps in lockmgr locks). The end result is that stop
signals sent to threads performing an NFS request are completely
ignored until after the NFS request has finished processing and the
thread prepares to return to userland. This restores the behavior of
stop signals being transparent to userland processes while still
preventing threads from suspending while holding NFS locks.
Reviewed by: kib
MFC after: 1 month
with TDP_NOSLEEPING on.
The current message has no informations on the thread and wchan
involed, which may be useful in case where dumps have mangled dwarf
informations.
Reported by: kib
Reviewed by: bde, jhb, kib
MFC after: 1 week