fd_lastfile is guaranteed to be the biggest open fd, so when the intent
is to iterate over active fds or lookup one, there is no point in looking
beyond that limit.
Few places are left unpatched for now.
MFC after: 1 week
further refinement is required as some device drivers intended to be
portable over FreeBSD versions rely on __FreeBSD_version to decide whether
to include capability.h.
MFC after: 3 weeks
In its stead use the Solaris / illumos approach of emulating '-' (dash)
in probe names with '__' (two consecutive underscores).
Reviewed by: markj
MFC after: 3 weeks
option, unbreak the lock tracing release semantic by embedding
calls to LOCKSTAT_PROFILE_RELEASE_LOCK() direclty in the inlined
version of the releasing functions for mutex, rwlock and sxlock.
Failing to do so skips the lockstat_probe_func invokation for
unlocking.
- As part of the LOCKSTAT support is inlined in mutex operation, for
kernel compiled without lock debugging options, potentially every
consumer must be compiled including opt_kdtrace.h.
Fix this by moving KDTRACE_HOOKS into opt_global.h and remove the
dependency by opt_kdtrace.h for all files, as now only KDTRACE_FRAMES
is linked there and it is only used as a compile-time stub [0].
[0] immediately shows some new bug as DTRACE-derived support for debug
in sfxge is broken and it was never really tested. As it was not
including correctly opt_kdtrace.h before it was never enabled so it
was kept broken for a while. Fix this by using a protection stub,
leaving sfxge driver authors the responsibility for fixing it
appropriately [1].
Sponsored by: EMC / Isilon storage division
Discussed with: rstone
[0] Reported by: rstone
[1] Discussed with: philip
in the future in a backward compatible (API and ABI) way.
The cap_rights_t represents capability rights. We used to use one bit to
represent one right, but we are running out of spare bits. Currently the new
structure provides place for 114 rights (so 50 more than the previous
cap_rights_t), but it is possible to grow the structure to hold at least 285
rights, although we can make it even larger if 285 rights won't be enough.
The structure definition looks like this:
struct cap_rights {
uint64_t cr_rights[CAP_RIGHTS_VERSION + 2];
};
The initial CAP_RIGHTS_VERSION is 0.
The top two bits in the first element of the cr_rights[] array contain total
number of elements in the array - 2. This means if those two bits are equal to
0, we have 2 array elements.
The top two bits in all remaining array elements should be 0.
The next five bits in all array elements contain array index. Only one bit is
used and bit position in this five-bits range defines array index. This means
there can be at most five array elements in the future.
To define new right the CAPRIGHT() macro must be used. The macro takes two
arguments - an array index and a bit to set, eg.
#define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL)
We still support aliases that combine few rights, but the rights have to belong
to the same array element, eg:
#define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL)
#define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL)
#define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP)
There is new API to manage the new cap_rights_t structure:
cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);
void cap_rights_set(cap_rights_t *rights, ...);
void cap_rights_clear(cap_rights_t *rights, ...);
bool cap_rights_is_set(const cap_rights_t *rights, ...);
bool cap_rights_is_valid(const cap_rights_t *rights);
void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src);
void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src);
bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little);
Capability rights to the cap_rights_init(), cap_rights_set(),
cap_rights_clear() and cap_rights_is_set() functions are provided by
separating them with commas, eg:
cap_rights_t rights;
cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);
There is no need to terminate the list of rights, as those functions are
actually macros that take care of the termination, eg:
#define cap_rights_set(rights, ...) \
__cap_rights_set((rights), __VA_ARGS__, 0ULL)
void __cap_rights_set(cap_rights_t *rights, ...);
Thanks to using one bit as an array index we can assert in those functions that
there are no two rights belonging to different array elements provided
together. For example this is illegal and will be detected, because CAP_LOOKUP
belongs to element 0 and CAP_PDKILL to element 1:
cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL);
Providing several rights that belongs to the same array's element this way is
correct, but is not advised. It should only be used for aliases definition.
This commit also breaks compatibility with some existing Capsicum system calls,
but I see no other way to do that. This should be fine as Capsicum is still
experimental and this change is not going to 9.x.
Sponsored by: The FreeBSD Foundation
using SDT_PROBE_ARGTYPE(). This will make it easy to extend the SDT(9) API
to allow probes with dynamically-translated types.
There is no functional change.
MFC after: 2 weeks
null_hashget() obtains the reference on the nullfs vnode, which must
be dropped.
- Fix a wart which existed from the introduction of the nullfs
caching, do not unlock lower vnode in the nullfs_reclaim_lowervp().
It should be innocent, but now it is also formally safe. Inform the
nullfs_reclaim() about this using the NULLV_NOUNLOCK flag set on
nullfs inode.
- Add a callback to the upper filesystems for the lower vnode
unlinking. When inactivating a nullfs vnode, check if the lower
vnode was unlinked, indicated by nullfs flag NULLV_DROP or VV_NOSYNC
on the lower vnode, and reclaim upper vnode if so. This allows
nullfs to purge cached vnodes for the unlinked lower vnode, avoiding
excessive caching.
Reported by: G??ran L??wkrantz <goran.lowkrantz@ismobile.com>
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
u_long. Before this change it was of type int for syscalls, but prototypes
in sys/stat.h and documentation for chflags(2) and fchflags(2) (but not
for lchflags(2)) stated that it was u_long. Now some related functions
use u_long type for flags (strtofflags(3), fflagstostr(3)).
- Make path argument of type 'const char *' for consistency.
Discussed on: arch
Sponsored by: The FreeBSD Foundation
In other words we don't require CAP_SEEK if either O_APPEND or O_TRUNC flag is
given, because O_APPEND doesn't allow to overwrite existing data and O_TRUNC
requires CAP_FTRUNCATE already.
Sponsored by: The FreeBSD Foundation
on the target directory descriptor, but only if this is renameat(2) and real
target directory descriptor is given (not AT_FDCWD). Without this fix regular
rename(2) fails if the target file already exists.
Reported by: Michael Butler <imb@protected-networks.net>
Reported by: Larry Rosenman <ler@lerctr.org>
Sponsored by: The FreeBSD Foundation
- Capability is no longer separate descriptor type. Now every descriptor
has set of its own capability rights.
- The cap_new(2) system call is left, but it is no longer documented and
should not be used in new code.
- The new syscall cap_rights_limit(2) should be used instead of
cap_new(2), which limits capability rights of the given descriptor
without creating a new one.
- The cap_getrights(2) syscall is renamed to cap_rights_get(2).
- If CAP_IOCTL capability right is present we can further reduce allowed
ioctls list with the new cap_ioctls_limit(2) syscall. List of allowed
ioctls can be retrived with cap_ioctls_get(2) syscall.
- If CAP_FCNTL capability right is present we can further reduce fcntls
that can be used with the new cap_fcntls_limit(2) syscall and retrive
them with cap_fcntls_get(2).
- To support ioctl and fcntl white-listing the filedesc structure was
heavly modified.
- The audit subsystem, kdump and procstat tools were updated to
recognize new syscalls.
- Capability rights were revised and eventhough I tried hard to provide
backward API and ABI compatibility there are some incompatible changes
that are described in detail below:
CAP_CREATE old behaviour:
- Allow for openat(2)+O_CREAT.
- Allow for linkat(2).
- Allow for symlinkat(2).
CAP_CREATE new behaviour:
- Allow for openat(2)+O_CREAT.
Added CAP_LINKAT:
- Allow for linkat(2). ABI: Reuses CAP_RMDIR bit.
- Allow to be target for renameat(2).
Added CAP_SYMLINKAT:
- Allow for symlinkat(2).
Removed CAP_DELETE. Old behaviour:
- Allow for unlinkat(2) when removing non-directory object.
- Allow to be source for renameat(2).
Removed CAP_RMDIR. Old behaviour:
- Allow for unlinkat(2) when removing directory.
Added CAP_RENAMEAT:
- Required for source directory for the renameat(2) syscall.
Added CAP_UNLINKAT (effectively it replaces CAP_DELETE and CAP_RMDIR):
- Allow for unlinkat(2) on any object.
- Required if target of renameat(2) exists and will be removed by this
call.
Removed CAP_MAPEXEC.
CAP_MMAP old behaviour:
- Allow for mmap(2) with any combination of PROT_NONE, PROT_READ and
PROT_WRITE.
CAP_MMAP new behaviour:
- Allow for mmap(2)+PROT_NONE.
Added CAP_MMAP_R:
- Allow for mmap(PROT_READ).
Added CAP_MMAP_W:
- Allow for mmap(PROT_WRITE).
Added CAP_MMAP_X:
- Allow for mmap(PROT_EXEC).
Added CAP_MMAP_RW:
- Allow for mmap(PROT_READ | PROT_WRITE).
Added CAP_MMAP_RX:
- Allow for mmap(PROT_READ | PROT_EXEC).
Added CAP_MMAP_WX:
- Allow for mmap(PROT_WRITE | PROT_EXEC).
Added CAP_MMAP_RWX:
- Allow for mmap(PROT_READ | PROT_WRITE | PROT_EXEC).
Renamed CAP_MKDIR to CAP_MKDIRAT.
Renamed CAP_MKFIFO to CAP_MKFIFOAT.
Renamed CAP_MKNODE to CAP_MKNODEAT.
CAP_READ old behaviour:
- Allow pread(2).
- Disallow read(2), readv(2) (if there is no CAP_SEEK).
CAP_READ new behaviour:
- Allow read(2), readv(2).
- Disallow pread(2) (CAP_SEEK was also required).
CAP_WRITE old behaviour:
- Allow pwrite(2).
- Disallow write(2), writev(2) (if there is no CAP_SEEK).
CAP_WRITE new behaviour:
- Allow write(2), writev(2).
- Disallow pwrite(2) (CAP_SEEK was also required).
Added convinient defines:
#define CAP_PREAD (CAP_SEEK | CAP_READ)
#define CAP_PWRITE (CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_R (CAP_MMAP | CAP_SEEK | CAP_READ)
#define CAP_MMAP_W (CAP_MMAP | CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_X (CAP_MMAP | CAP_SEEK | 0x0000000000000008ULL)
#define CAP_MMAP_RW (CAP_MMAP_R | CAP_MMAP_W)
#define CAP_MMAP_RX (CAP_MMAP_R | CAP_MMAP_X)
#define CAP_MMAP_WX (CAP_MMAP_W | CAP_MMAP_X)
#define CAP_MMAP_RWX (CAP_MMAP_R | CAP_MMAP_W | CAP_MMAP_X)
#define CAP_RECV CAP_READ
#define CAP_SEND CAP_WRITE
#define CAP_SOCK_CLIENT \
(CAP_CONNECT | CAP_GETPEERNAME | CAP_GETSOCKNAME | CAP_GETSOCKOPT | \
CAP_PEELOFF | CAP_RECV | CAP_SEND | CAP_SETSOCKOPT | CAP_SHUTDOWN)
#define CAP_SOCK_SERVER \
(CAP_ACCEPT | CAP_BIND | CAP_GETPEERNAME | CAP_GETSOCKNAME | \
CAP_GETSOCKOPT | CAP_LISTEN | CAP_PEELOFF | CAP_RECV | CAP_SEND | \
CAP_SETSOCKOPT | CAP_SHUTDOWN)
Added defines for backward API compatibility:
#define CAP_MAPEXEC CAP_MMAP_X
#define CAP_DELETE CAP_UNLINKAT
#define CAP_MKDIR CAP_MKDIRAT
#define CAP_RMDIR CAP_UNLINKAT
#define CAP_MKFIFO CAP_MKFIFOAT
#define CAP_MKNOD CAP_MKNODAT
#define CAP_SOCK_ALL (CAP_SOCK_CLIENT | CAP_SOCK_SERVER)
Sponsored by: The FreeBSD Foundation
Reviewed by: Christoph Mallon <christoph.mallon@gmx.de>
Many aspects discussed with: rwatson, benl, jonathan
ABI compatibility discussed with: kib
* VM_OBJECT_LOCK and VM_OBJECT_UNLOCK are mapped to write operations
* VM_OBJECT_SLEEP() is introduced as a general purpose primitve to
get a sleep operation using a VM_OBJECT_LOCK() as protection
* The approach must bear with vm_pager.h namespace pollution so many
files require including directly rwlock.h
Posix requires that open(2) is restartable for SA_RESTART.
For non-posix objects, in particular, devfs nodes, still disable
automatic restart of the opens. The open call to a driver could have
significant side effects for the hardware.
Noted and reviewed by: jilles
Discussed with: bde
MFC after: 2 weeks
In particular, do not lock Giant conditionally when calling into the
filesystem module, remove the VFS_LOCK_GIANT() and related
macros. Stop handling buffers belonging to non-mpsafe filesystems.
The VFS_VERSION is bumped to indicate the interface change which does
not result in the interface signatures changes.
Conducted and reviewed by: attilio
Tested by: pho
If O_EXEC is provided don't require CAP_READ/CAP_WRITE, as O_EXEC
is mutually exclusive to O_RDONLY/O_WRONLY/O_RDWR.
Without this change CAP_FEXECVE capability right is not enforced.
Sponsored by: FreeBSD Foundation
MFC after: 3 days
lock is obtained before the write count is increased during open() and the
lock is released after the write count is decreased during close().
The first change closes a race where an open() that will block with O_SHLOCK
or O_EXLOCK can increase the write count while it waits. If the process
holding the current lock on the file then tries to call exec() on the file
it has locked, it can fail with ETXTBUSY even though the advisory lock is
preventing other threads from succesfully completeing a writable open().
The second change closes a race where a read-only open() with O_SHLOCK or
O_EXLOCK may return successfully while the write count is non-zero due to
another descriptor that had the advisory lock and was blocking the open()
still being in the process of closing. If the process that completed the
open() then attempts to call exec() on the file it locked, it can fail with
ETXTBUSY even though the other process that held a write lock has closed
the file and released the lock.
Reviewed by: kib
MFC after: 1 month
now fully encapsulates all accesses to f_offset, and extends f_offset
locking to other consumers that need it, in particular, to lseek() and
variants of getdirentries().
Ensure that on 32bit architectures f_offset, which is 64bit quantity,
always read and written under the mtxpool protection. This fixes
apparently easy to trigger race when parallel lseek()s or lseek() and
read/write could destroy file offset.
The already broken ABI emulations, including iBCS and SysV, are not
converted (yet).
Tested by: pho
No objections from: jhb
MFC after: 3 weeks
First, extend the changes in r230782 to better handle the common case
of using NOREUSE with sequential reads. A NOREUSE file descriptor
will now track the last implicit DONTNEED request it made as a result
of a NOREUSE read. If a subsequent NOREUSE read is adjacent to the
previous range, it will apply the DONTNEED request to the entire range
of both the previous read and the current read. The effect is that
each read of a file accessed sequentially will apply the DONTNEED
request to the entire range that has been read. This allows NOREUSE
to properly handle misaligned reads by flushing each buffer to cache
once it has been completely read.
Second, apply the same changes made to read(2) by r230782 and this
change to writes. This provides much better performance in the
sequential write case as it allows writes to still be clustered. It
also provides much better performance for misaligned writes. It does
mean that NOREUSE will be generally ineffective for non-sequential
writes as the current implementation relies on a future NOREUSE
write's implicit DONTNEED request to flush the dirty buffer from the
current write.
MFC after: 2 weeks
indx will never be -1 on error, as none of dupfdopen(), finstall() and
kern_capwrap() modifies it on error, but what is more important none of
those functions install and leave file at indx descriptor on error.
Leave an assert to prove my words.
MFC after: 1 month
the caller using finstall().
This saves us the filedesc lock/unlock cycle, fhold()/fdrop() cycle and closes
a race between finstall() and dupfdopen().
MFC after: 1 month