Original log:
pfctl -ss printed state levels for ICMPv6. Disable this the same
way it has already been done for ICMPv4.
Difference with OpenBSD:
- WITHOUT_INET6 safe
Obtained from: OpenBSD
when -u is specified it is not...
update the docs to say that you can use full device names w/ -u, and
update the examples...
Submitted by: #vbsdcon
MFC after: 3 days
This is believed to fix hastd crashes, which might occur during
synchronization, triggered by the failed assertion:
Assertion failed: (amp->am_memtab[ext] > 0),
function activemap_write_complete, file activemap.c, line 351.
MFC after: 1 week
1. "-u N" specified, no -f, and mdN found,
2. no -u, "-f /pathname" specified, and mdN associated with /pathname found,
3. "-u N" specified, "-f /pathname" specified, and both of them found,
4. "-l" specified and no -f,
5. "-l" specified, "-f /pathname" specified, and /pathname found.
otherwise return -1.
Spotted by: Julian H. Stacey
di_extsize is the EA size and as such it should be unsigned.
Adjust related types for consistency.
Reviewed by: mckusick (previous version)
MFC after: 3 weeks
Always validate the return of find_geomcfg(). It could be NULL, for
example when the geom is withering.
Approved by: ken (mentor)
Sponsored by: Spectra Logic Corporation
MFC after: 3 weeks
with CARP.
Currently, we've got a problem that interface isn't IFF_UP at the time
we assign it a redundant address, and the latter gets stuck in INIT state.
Additional SIOCSIFFLAGS from ifconfig(8) kicks it to a working state.
A proper fix is kernel side and appeared to be non-trivial, not to be
checked in before 10.0-RELEASE.
Submitted by: Ole Myhre <ole.myhre dataoppdrag.no>
already belongs or removing it from a group to which it does not
belong. This makes it possible to include group memberships in
ifconfig_foo0 in rc.conf without fear of breaking "service netif
restart foo0".
MFC after: 3 days
that it's being used by both initiators, and change the title to make
it more easily searchable.
Approved by: re (glebius)
Sponsored by: FreeBSD Foundation
when calculating stats in nvmecontrol perftest.
Sponsored by: Intel
Reported by: Joe Golio <joseph.golio@emc.com>
Reviewed by: carl
Approved by: re (hrs)
MFC after: 1 week
kept dirty to reduce the number of on-disk metadata updates. The
sequence of operations is:
1) acquire the activemap lock;
2) update in-memory map;
3) if the list of keepdirty extents is changed, update on-disk metadata;
4) release the lock.
On-disk updates are not frequent in comparison with in-memory updates,
while require much more time. So situations are possible when one
thread is updating on-disk metadata and another one is waiting for the
activemap lock just to update the in-memory map.
Improve this by introducing additional, on-disk map lock: when
in-memory map is updated and it is detected that the on-disk map needs
update too, the on-disk map lock is acquired and the on-memory lock is
released before flushing the map.
Reported by: Yamagi Burmeister yamagi.org
Tested by: Yamagi Burmeister yamagi.org
Reviewed by: pjd
Approved by: re (marius)
MFC after: 2 weeks
waiting on an empty queue as the queue may have several consumers.
Before the fix the following scenario was possible: 2 threads are
waiting on empty queue, 2 threads are inserting simultaneously. The
first inserting thread detects that the queue is empty and is going to
send the signal, but before it sends the second thread inserts
too. When the first sends the signal only one of the waiting threads
receive it while the other one may wait forever.
The scenario above is is believed to be the cause of the observed
cases, when ggate_recv_thread() was getting stuck on taking free
request, while the free queue was not empty.
Reviewed by: pjd
Tested by: Yamagi Burmeister yamagi.org
Approved by: re (marius)
MFC after: 2 weeks
The fields from deMTime and deMDate in the DOS directory entry
are actually the last-modified time/date.
According to some online documentation these are the only
timestamps available in FAT12/FAT16.
MFC after: 3 days
in the future in a backward compatible (API and ABI) way.
The cap_rights_t represents capability rights. We used to use one bit to
represent one right, but we are running out of spare bits. Currently the new
structure provides place for 114 rights (so 50 more than the previous
cap_rights_t), but it is possible to grow the structure to hold at least 285
rights, although we can make it even larger if 285 rights won't be enough.
The structure definition looks like this:
struct cap_rights {
uint64_t cr_rights[CAP_RIGHTS_VERSION + 2];
};
The initial CAP_RIGHTS_VERSION is 0.
The top two bits in the first element of the cr_rights[] array contain total
number of elements in the array - 2. This means if those two bits are equal to
0, we have 2 array elements.
The top two bits in all remaining array elements should be 0.
The next five bits in all array elements contain array index. Only one bit is
used and bit position in this five-bits range defines array index. This means
there can be at most five array elements in the future.
To define new right the CAPRIGHT() macro must be used. The macro takes two
arguments - an array index and a bit to set, eg.
#define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL)
We still support aliases that combine few rights, but the rights have to belong
to the same array element, eg:
#define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL)
#define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL)
#define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP)
There is new API to manage the new cap_rights_t structure:
cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);
void cap_rights_set(cap_rights_t *rights, ...);
void cap_rights_clear(cap_rights_t *rights, ...);
bool cap_rights_is_set(const cap_rights_t *rights, ...);
bool cap_rights_is_valid(const cap_rights_t *rights);
void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src);
void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src);
bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little);
Capability rights to the cap_rights_init(), cap_rights_set(),
cap_rights_clear() and cap_rights_is_set() functions are provided by
separating them with commas, eg:
cap_rights_t rights;
cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);
There is no need to terminate the list of rights, as those functions are
actually macros that take care of the termination, eg:
#define cap_rights_set(rights, ...) \
__cap_rights_set((rights), __VA_ARGS__, 0ULL)
void __cap_rights_set(cap_rights_t *rights, ...);
Thanks to using one bit as an array index we can assert in those functions that
there are no two rights belonging to different array elements provided
together. For example this is illegal and will be detected, because CAP_LOOKUP
belongs to element 0 and CAP_PDKILL to element 1:
cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL);
Providing several rights that belongs to the same array's element this way is
correct, but is not advised. It should only be used for aliases definition.
This commit also breaks compatibility with some existing Capsicum system calls,
but I see no other way to do that. This should be fine as Capsicum is still
experimental and this change is not going to 9.x.
Sponsored by: The FreeBSD Foundation
(sys/dev/iscsi_initiator/ instead of sys/dev/iscsi/initiator/), to make
room for the new one. This is also more logical location (kernel module
being named iscsi_initiator.ko, for example). There is no ongoing work
on this I know of, so it shouldn't make life harder for anyone.
There are no functional changes, apart from "svn mv" and adjusting paths.
being defined in <sys/diskmbr.h>. Instead give the symbols here a
"PC98_" prefix. This way, both <sys/diskmbr.h> and <sys/diskpc98.h>
can be included in the same C source file.
The renaming is trivial. The only gotcha is that DOSBBSECTOR is
also redefined from 0 to 1. This because DOSBBSECTOR was always
used in conjunction with an addition of 1. The PC98_BBSECTOR symbol
is defined as 1 and the expression is simplified.
Note: it is not believed that ports are seriously impacted; or at
all for that matter.
Approved by: nyan@