Commit Graph

1412 Commits

Author SHA1 Message Date
adrian
8df6c6b408 Call ath_tx_tid_unsched() after the node has been flushed, so the
state can be printed correctly.
2012-09-25 05:56:59 +00:00
adrian
d870dd946f Migrate the ath(4) KTR logging to use an ATH_KTR() macro.
This should eventually be unified with ATH_DEBUG() so I can get both
from one macro; that may take some time.

Add some new probes for TX and TX completion.
2012-09-24 20:35:56 +00:00
adrian
22f63cd570 Debugging output fixes:
* use the correct frame status - although the completion descriptor is
  the _last_ in the frame/aggregate, the status is currently stored in
  the _first_ buffer.

* Print out ath_buf specific fields once, not per descriptor in an ath_buf.
2012-09-24 19:48:41 +00:00
adrian
fabac59d19 Prepare for software retransmission of non-aggregate frames but ensure
it's disabled.

The previous commit to enable CLRDMASK setting didn't do it at all
correctly for non-aggregate sessions - so the CLRDMASK bit would be
cleared and never re-set.

* move ath_tx_update_clrdmask() to be called by functions that setup
  descriptors and queue frames to the hardware, rather than scattered
  everywhere.

* Force CLRDMASK to be set on all non-aggregate session frames being
  transmitted.

* Use ath_tx_normal_comp() now on non-aggregate sessoin frames
  that are queued via ath_tx_xmit_normal().  That way the TID hwq is
  updated and they can trigger (eventual) filter frame queue resets
  and software retransmits.

There's still a bit more work to do in this area to reverse the silly
short-sightedness on my part, however it's likely going to be better
to fix this now than just reverting the patch.

Thanks to people on the freebsd-wireless@ mailing list for promptly
pointing this out.
2012-09-24 06:42:20 +00:00
adrian
fa52483314 In (eventual) preparation for supporting disabling the whole 11n/software
retry path - add some code to make it obvious (to me!) how to disable
the software tx path.
2012-09-24 06:00:51 +00:00
adrian
660416c5ae Introduce the CLRDMASK gating based on tid->clrdmask, enabling filtered
frames to occur.

* Create a new function which will set the bf_flags CLRDMASK bit
  if required.
* For raw frames, always set CLRDMASK.
* For BAR, ADDBA frames, always set CLRDMASK.
* For everything else, check if CLRDMASK needs to be set before
  calling tx_setds() or tx_setds11n().
* When unpausing a queue or drain/resetting it, set tid->clrdmask=1
  just to ensure traffic starts flowing.

What I need to do:

* Modify that function to _clear_ the CLRDMASK if it's not required,
  or retried frames may have CLRDMASK set when they don't need to.
  (Which isn't a huge deal, but..)

Whilst I'm here:

* ath_tx_normal_xmit() should really act like the AMPDU session TX
  functions - any incomplete frames will end up being assigned
  ath_tx_normal_comp() which will decrement tid->hwq_depth - but that
  won't have been incremented.

  So whilst I'm here, add a comment to do that.

* Fix the debug print function to be slightly clearer about things;
  it's not a good sign when I can't interpret my own debugging output.

I've done some testing on AR9280/AR5416/AR9160 STA and AP modes.
2012-09-20 03:13:20 +00:00
adrian
a58474fdbd Place the comment where it should be. 2012-09-20 03:04:19 +00:00
adrian
965fb08287 Add a work-around for some strange net80211 BAR races in the wireless
stack.

There are unfortunately quite a few odd cases in BAR TX and BAR TX
retransmission that I haven't yet fully diagnosed.  So for now, add
this work-around so the resume() function isn't called too often,
decrementing pause to -1 (and causing things to stay paused.)
2012-09-20 03:03:01 +00:00
adrian
2f179bd308 Oops - take a copy of ath_tx_status from the buffer before the TX processing
is done.

The aggregate path was definitely accessing 'ts' before it was actually
being assigned.

This had the side effect of over-filtering frames, since occasionally that
bit would be '1'.

Whilst here, do the same thing in the non-aggregate completion function -
as calling the filter function may also invalidate bf.

Pointy hat to: adrian, for not noticing this over many, many code reviews.
2012-09-18 20:33:04 +00:00
adrian
7945cc929c Implement my first cut at filtered frames in aggregation sessions.
The hardware can optionally "filter" frames if successive transmissions
to a given node (ie, "entry in the keycache") fail.  That way the hardware
can implement a kind of early abort of all the other frames queued to
that destination, rather than simply trying to TX each frame to that
destination (and failing.)

The background:

* If a frame comes back as being filtered, the hardware didn't try to
  TX it (or it was outside the TX burst opportunity.) So, take it as a hint
  that some (but not all, see below) frames to the destination may be
  filtered.

* If the CLRDMASK bit is set in a TX descriptor, the "filter to this
  destination" bit in the keycache entry is cleared and TX to that host
  will be unconditionally retried.

* Right now everything has the CLRDMASK bit set, so filtered frames
  tend to be aggregates and frames that fall outside of the WME burst
  window. It was a bit worse in the past as I had messed up the TX
  flags and CLRDMASK wasn't being set on aggregate frames.

The annoying bits:

* It's easy (ish) to do for aggregate session frames - firstly, they
  can be retried in any order as long as they're within the BAW, and
  there's already a bunch of infrastructure tracking how many frames
  the TID has queued to the hardware (tid->hwq_depth.) However, for
  frames that bypassed the software queue, hwq_depth doesn't get
  incremented. I'll fix that in a subsequent commit.

* For non-aggregate session frames, the only retries that can occur
  are ones for sequence numbers that hvaen't successfully been TXed yet.
  Since there's no re-ordering going on in non-aggregate sessions, if any
  subsequent seqno frames make it out, any filtered frames before that
  seqno need to be dropped.

  Hence why this initially is just for aggregate session frames.

* Since there may be intermediary frames to the destination that
  have CLRDMASK set - for example, any directly dispatched management
  frames to that destination - it's possible that there will be some
  filtered frames followed up by some non filtered frames.  Thus,
  it can't be assumed that once you see a filtered frame for the given
  destination node, all subsequent frames for all TIDs will be filtered.

Ok, with that in mind:

* Create a per-TID filtered frame queue for frames that the hardware
  returns as filtered.

* Track filtered frames per-tid, rather than per-node.  It just makes
  the locking much easier.

* When a filtered frame appears in the completion function, the node
  transitions to "filtered", and all subsequent completed error frames
  (filtered or otherwise) are put on the filtered frame queue.  The TID
  is paused once (during the transition from non-filtered to filtered).

* If a filtered frame retry count exceeds SWMAX_RETRIES, a BAR should be
  sent.

* Once all the frames queued to the hardware for the given filtered frame
  TID, transition back from filtered frame to non-filtered frame, which
  means pre-pending all the filtered frames onto the head of the software
  queue, clearing the filtered frame state and unpausing the TID.

Things get quite hairy around handling completion (aggr, non-aggr, norm,
direct-dispatched frames to a hardware queue); whether it's an "error",
"cleanup" or "BAR" state as well as filtered, which order to do things
in (eg do filtered BEFORE checking for BAR, as the filter completion
may be needed to actually transmit a BAR frame.)

This work has definitely reminded me that I have to tidy up all the locking
and remove some of the ridiculous lock/unlock/lock/unlock going on in the
completion functions.

It's also reminded me that I should really split out TID versus hardware TXQ
locking, even if the underlying locking is still the destination hardware TXQ.

Finally, this is all pre-requisite for working on AP mode power save support
(PS-POLL, uAPSD) as well as improving performance to misbehaving nodes (as
they can transition into filter mode, stopping any TX until everything has
caught up.)

Finally (ish) - this should also be done for non-aggregate sessions as
there are still plenty of laptops and mobile devices that don't speak
802.11n but do wish for stable, useful power save AP support where packets
aren't simply dropped.  This requires software retransmission for
non-aggregate sessions to be implemented, which includes the caveats I've
mentioned above.

Finally finally - this doesn't yet do anything about the CLRDMASK bit in the
TX descriptor.  That's still unconditionally set to 1.  I'll debug the
current work (mostly ensuring I haven't busted up the hairy transitions
between BAR, filtered, error (all frames in an aggregate failing) and
cleanup (when transitioning from aggregation -> non-aggregation.))

Finally finally finally - this is all original work by yours truely, rather
than ported from the Atheros internal driver codebase or Linux ath9k.

Tested:
 * AR9280, AR5416 in STA mode
 * AR9280, AR9130 in hostap mode
 * Lots and lots of iperf testing in very marginal and non-marginal conditions,
   complete with inducing filtered frames + BAR TX conditions.
2012-09-18 10:14:17 +00:00
adrian
9d2232176b Add a couple of accessor inline functions for state that exists in net80211.
Obtained from:	Qualcomm Atheros
2012-09-18 01:27:24 +00:00
adrian
b936866677 Rename AH_MIMO_MAX_CHAINS to AH_MAX_CHAINS, for compatibility with
internal atheros HAL code.
2012-09-17 23:24:45 +00:00
adrian
c03f992890 Take credit for the work I've done in this source file. 2012-09-17 03:17:42 +00:00
adrian
3f1029eaf4 Add a per-TID filter queue and filter state bits.
These are intended for software TX filtering support, where the NIC
decides there has been too many successive failues to a destination
and will filter it.

Although the filtering is done per-destination (via the keycache),
the state and queue is kept per-TID for now.  It simplifies the overall
architecture design and locking.

Whilst here, add ATH_TID_UNLOCK_ASSERT().
2012-09-17 01:21:55 +00:00
adrian
1bf6898510 Add a debug bit for TX destination filtering. 2012-09-17 01:18:47 +00:00
adrian
af98639e61 Improve performance of the Sample rate algorithm on 802.11n networks.
* Don't treat high percentage failures as "sucessive failures" - high
  MCS rates are very picky and will quite happily "fade" from low
  to high failure % and back again within a few seconds.  If they really
  don't work, the aggregate will just plain fail.

* Only sample MCS rates +/- 3 from the current MCS.  Sample will back off
  quite quickly, so there's no need to sample _all_ MCS rates between
  a high MCS rate and MCS0; there may be a lot of them.

* Modify the smoothing rate to be 75% rather than 95% - it's more adaptive
  but it comes with a cost of being slightly less stable at times.
  A per-node, hysterisis behaviour would be nicer.
2012-09-17 01:09:17 +00:00
adrian
03471881d0 Don't use AR_PHY_MODE to setup half/quarter rate.
I'm not sure where in the deep, distant past I found the AR_PHY_MODE
registers for half/quarter rate mode, but unfortunately that doesn't
seem to work "right" for non-AR9280 chips.

Specifically:

* don't touch AR_PHY_MODE
* set the PLL bits when configuring half/quarter rate

I've verified this on the AR9280 (5ghz fast clock) and the AR5416.

The AR9280 works in both half/quarter rate; the AR5416 unfortunately
only currently works at half rate.  It fails to calibrate on quarter rate.
2012-09-13 18:24:13 +00:00
adrian
3904fa5b0b Enable fractional 5G mode on half/quarter rate channels.
Obtained from:	Linux ath9k
2012-09-13 07:25:41 +00:00
adrian
ec408c6812 Flip on half/quarter rate support.
No, this isn't HT/5 and HT/10 support.  This is the 11a half/quarter
rate support primarily used by the 4.9GHz and GSM band regulatory
domains.

This is definitely a work in progress.

TODO:

* everything in the last commit;
* lots more interoperability testing with the AR5212 half/quarter rate
  support for the relevant chips;
* Do some interop testing on half/quarter rate support between _all_
  the 11n chips - AR5416, AR9160, AR9280 (and AR9285/AR9287 when 2GHz
  half/quarter rate support is coded up.)
2012-09-13 07:24:14 +00:00
adrian
f769d7fc55 Introduce an AR5416 flavour of the IFS and mac usec/timing configuration
used when running the chips in half/quarter rate.

This sets up some default parameters which are then overridden by the
driver (which manually configures things like slot timing at interface
start time.)

Although this is a copy-and-modify from the AR5212 HAL, I did peek
at the reference HAL and the ath9k driver to see what they did.
Ath9k in particular doesn't hard-code this - instead, their version
of ar5416InitUserSettings() does all of the relevant math.

TODO:

* do the math, not hard code things!
* fix the mac clock calculation for the AR9287; since it runs the
  MAC clock at a higher rate, requiring all the duration calculations
  to change;
* Do a whole lot more validation for half/quarter rates.

Obtained from:	Qualcomm Atheros, Linux ath9k
2012-09-13 07:22:40 +00:00
adrian
ccf1eb95b9 Call the ar5212SetCoverageClass() function for now.
Some of the math is a little wrong thanks to clocks in 11a mode running
at 44MHz when in fast clock mode (rather than 40MHz, which the chips
before AR9280 ran 11a in).  That'll have to be addressed in a future commit.
2012-09-13 07:19:53 +00:00
adrian
155b550f31 Add register defintions for the AR5416 TX/RX latency fields.
Obtained from:	Qualcomm Atheros
2012-09-13 07:17:58 +00:00
adrian
8cae2ecab4 Compensate for half/quarter rate differences in MAC clock speed.
This fixes the incorrect slot (and likely ACK/RTS timeout) values
which I see when enabling half/quarter rate support on the AR9280.

The resulting math matches the expected calculated default values.
2012-09-13 07:17:29 +00:00
adrian
5f9822635b Clear the correct descriptor when going through the chained together
gather DMA descriptor list.

Pointy hat to: adrian@, for even USING bf->bf_desc here instead of 'ds'.
2012-09-11 04:11:42 +00:00
adrian
40933d4b26 Make sure the aggregate fields are properly cleared - both in the
ath_buf and when forming a non-aggregate frame.

The non-11n setds function is called when TXing aggregate frames (and
yes, I should fix this!) and the non-11n TX aggregation code doesn't clear
the delimiter field.  I figure it's nicer to do that.
2012-09-09 05:06:16 +00:00
adrian
368dcf1975 Remove TDMA #define entries from if_ath.c; they now exist in if_ath_tdma.h. 2012-09-09 04:53:10 +00:00
adrian
fb40c86f7f Correctly mask out the RTS/CTS flags when forming aggregates.
This had the side effect of clearing HAL_TXDESC_CLRDMASK for a bunch of
frames, meaning they'd end up being potentially filtered if there were
an error.  This is fine in the previous world as they'd just be
software retried but now that I'm working on filtered frames, these
descriptors would be endlessly retried until another valid frame would
come along that had CLRDMASK set.
2012-09-08 02:56:09 +00:00
adrian
fe109c3517 Ensure that single-frame aggregate session frames are retransmitted
with the correct configuration.

Occasionally an aggregate TX would fail and the first frame would be
retransmitted as a non-AMPDU frame.  Since bfs_aggr=1 and bfs_nframes > 1
(from the previous AMPDU attempt), the aggr completion function would be
called and be very confused about what's going on.

Noticed by:	Kim <w8hdkim@gmail.com>
PR:		kern/171394
2012-09-07 00:24:27 +00:00
adrian
fb02ef2ab9 Disable strong signal diversity when enabling radar pulse detection
for the AR5212 era NICs.
2012-09-02 05:01:10 +00:00
adrian
1fc244ccc8 AR5212 radar pulse fixes.
Fix the strong signal diversity capability setting - I had totally
messed up the indentation.

Set the default values to match what's in the .ini for now, rather than
what values I had previously gleaned from places.  This seems to work
quite well for the early AR5212 NICs I have.  Of course, later NICs
have different PHYs and the radar configuration is very card/board
dependent..

Tested:

 * ath1: AR5212 mac 5.3 RF5111 phy 4.1
   ath1: 2GHz radio: 0x0023; 5GHz radio: 0x0017

This detects 1, 5, 25, 50, 75, 100uS pulses reliably (with no interference.)

However, 10uS pulses don't detect reliably. That may be around the
transition between short and long pulses so some further tuning may
improve things.
2012-09-02 04:56:29 +00:00
adrian
408b4cbe5a Fix the PHY / CRC error bug in the AR5212 HAL, which apparently also pops
up on (at least) the AR5413.

The 30 second summary - if a CRC error frame comes in during PHY error
processing, that CRC bit will be set for all subsequent frames until
a non-CRC error frame is processed.

So to allow for accurate PHY error processing (Radar, and ANI on the AR5212
HAL chips) just tag the frame as being both CRC and PHY - let the driver
decide what to do with it.

PR:		kern/169362
2012-09-01 05:43:30 +00:00
adrian
bfc4fdf579 Migrate the AR9285 diversity configuration LNA configuration to use
some HAL definitions rather than local definitions.

The original source (ath9k) pulled this stuff from the QCA driver and
removed the HAL_* prefix.  I'm just restoring the correct order of things.

Obtained from:	Qualcomm Atheros
2012-08-30 06:55:47 +00:00
adrian
13dd70acbf There's no nede to allocate a DMA map just before calling bus_dmamem_alloc().
In fact, bus_dmamem_alloc() happily NULLs the dmat pointer passed in,
before replacing it with its own.

This fixes a MIPS crash when kldload'ing if_ath/if_ath_pci -
bus_dmamap_destroy() was passed in a NULL dmat pointer and was doing
all kinds of very bad things.

Reviewed by:	scottl
2012-08-29 16:58:51 +00:00
adrian
6866af3b18 Set the HAL combined antenna diversity capability if the AR9285
EEPROM settings allow it.
2012-08-29 04:11:00 +00:00
adrian
6640c26a52 Add a new capability bit - whether the hardware supports AR9285 style
combined diversity.
2012-08-29 04:09:54 +00:00
adrian
5dca84e0c6 Add AR5413 radar parameters and strong signal diversity capability.
This is a re-implementation based on the reference carrier code
for the AR5413.

Tested:
 * Pulse detection for AR5212 and AR5413, to ensure the
   correct behaviour for both chips

PR:		kern/170904
Obtained from:	Qualcomm Atheros
2012-08-29 03:58:13 +00:00
adrian
7435a1711c Add a (temporarily located) definition. 2012-08-29 03:50:59 +00:00
adrian
51a27e09d5 Remove - not needed. 2012-08-29 00:53:58 +00:00
adrian
33cea4ce06 Remove extra debugging - there's no longer any need. 2012-08-29 00:53:41 +00:00
adrian
6b4884a864 Only print the descriptor contents!
Found by:	magical CLANG build environments

Submitted by:	Sevan <venture37@gmail.com>
2012-08-27 23:27:41 +00:00
adrian
1d9b13abd8 Improve the sample rate logging. 2012-08-27 20:30:07 +00:00
adrian
bbc1ae0d1b Ensure that all firstep values are available in ANI.
The comparison assumes maxFirstepLevel is a count, rather than a maximum
value.  The array is 3 entries in size however 'maxFirstepLevel' is 2.

This bug also exists in the AR5212 HAL.
2012-08-27 20:10:38 +00:00
adrian
ad14f7cf22 Fix the debugging output to correctly log CCK errors. 2012-08-27 20:03:08 +00:00
adrian
50719b56d9 Move this magic check to only occur if no eeprom data is given.
Tested on:

	* AP99 (AR7241+AR9287)
2012-08-26 04:26:49 +00:00
adrian
77533c7f33 Add EEPROM data hooks for the AR9287.
Tested:
	* AP99 Reference board (AR7241 + AR9287)
2012-08-26 04:26:25 +00:00
adrian
d8c02526b3 Remove the hard-coded AR5416-series parameters and instead use the
DFS parameters fetched from the HAL.

Check whether the specific chipset supports RADAR reporting before
enabling DFS; or some of the (unset) DFS methods may fail.

Tested:

* AR5210 (correctly didn't enable radar PHY reporting)
* AR5212 (correctly enabled radar PHY reporting w/ the correct default
  parameters.)

TODO:

* Now that I have this capability check in place, I could remove the
  (empty) DFS methods from AR5210/AR5211.
* Test on AR5416, AR9160, AR9280.

PR:		kern/170904
2012-08-24 17:39:57 +00:00
adrian
0a128d7822 Correctly handle the "pe_enabled" flag - both when configuring DFS and
fetching the current DFS configuration.

PR:		kern/170904
2012-08-24 17:37:51 +00:00
adrian
ec4ef3d914 Add an accessor macro for getting access to the default DFS parameters.
PR:		kern/170904
2012-08-24 17:37:12 +00:00
adrian
d298fbe4d2 Add default values for the NumTxMaps capability. 2012-08-24 07:35:18 +00:00
adrian
de824c9637 Add the method to fetch the default DFS parameters for the AR5212 PHY.
I need to check whether new parameters were added for the AR5413 NIC.

PR:		kern/170904
2012-08-24 07:32:35 +00:00
adrian
dcb5de60c2 Implement an API to fetch the default DFS parameters for the given chip.
The only chip this is currently implemented for is the AR5416 HAL family.
A follow-up commit will add AR5212 support.

PR:		kern/170904
2012-08-24 01:29:46 +00:00
adrian
730a625ffc Bring over some new EEPROM regulatory domain flags.
Obtained from:	Qualcomm Atheros
2012-08-24 01:14:00 +00:00
adrian
7b068d598a Oops, another copy/paste issue. 2012-08-24 00:54:31 +00:00
adrian
080544287e Add ath_hal_get_curmode() - this is used by the Osprey HAL.
Obtained from:	Qualcomm Atheros
2012-08-24 00:52:37 +00:00
adrian
64e8e7127d Add rfkill HAL accessor methods. 2012-08-24 00:43:10 +00:00
adrian
25d46b5c9a Oops, fix copy/paste silliness. 2012-08-24 00:40:01 +00:00
adrian
e1d6ea8a1b Add some more capabilities (unused at the present.)
Obtained from:	Qualcomm Atheros
2012-08-24 00:36:47 +00:00
adrian
6b7bb57cfb Add the MFP capability to ath_hal_getcapability().
Obtained from:	Qualcomm Atheros
2012-08-24 00:33:25 +00:00
adrian
4709a31eb6 Add some more diagnostic codes.
Obtained from:	Qualcomm Atheros
2012-08-24 00:17:39 +00:00
adrian
47e7db574a Wrap this a little so it's slightly easier on the eyes. 2012-08-24 00:15:26 +00:00
adrian
2a095635a7 Add some new flags:
* mfp support;
* 4.9ghz support in the HAL;
* device type - specifically, the bus type and whether it's a HB63
  NIC (which requires some subtle chainmask handling differences
  in the AR5416 HAL.)

Obtained from:	Qualcomm Atheros
2012-08-24 00:09:49 +00:00
adrian
03785c15ff Add a placeholder and typedefs for MFP (management frame protection.)
Obtained from:	Qualcomm Atheros
2012-08-23 03:37:01 +00:00
adrian
f73fb68626 Add some more interrupt handling bits.
Obtained from:	Qualcomm Atheros
2012-08-23 03:25:09 +00:00
adrian
8e2d98cf8a Add AR9380 devid HAL definitions and probe/attach strings.
Obtained from:	Device IDs are from Qualcomm Atheros
2012-08-23 03:03:00 +00:00
adrian
82d5234c9c Add chipset names. 2012-08-23 02:58:06 +00:00
adrian
f82622434f Initialise an uninitialised variable.
GCC on -9 didn't pick this up; clang did.

Submitted by:	David Wolfskill
2012-08-21 16:44:25 +00:00
adrian
cefce0e7d0 Fix a build issue when ATH_DEBUG isn't defined - just initialise and use
qnum.
2012-08-20 18:57:41 +00:00
adrian
b892612596 Wrap debugging in #ifdef ATH_DEBUG 2012-08-20 15:30:26 +00:00
adrian
07106f29ee Flesh out some initial EDMA TX FIFO fill, complete and refill routines.
Note: This is totally sub-optimal and a work in progress.

* Support filling an empty FIFO TXQ with frames from the ath_buf queue
  in the ath_txq list.  However, since there's (currently) no clean, easy
  way to separate the frames that are in the FIFO versus just waiting,
  the code waits for the FIFO to be totally empty before it attempts to
  queue more.  This is highly sub-optimal but is enough to get the ball
  rolling.

* A _lot_ of the code assumes that the TX status is filled out in the
  struct ath_buf bf_status field.  So for now, memcpy() the completion over.

* None of the TX drain / reset routines will attempt to complete completed
  frames before draining, so it can't be used for 802.11n TX aggregation.
  (This won't work anyway, as the aggregation TX descriptor API hasn't
  yet been converted; and that'll happen in some future commits.)

* Fix an issue where the FIFO counter wasn't being incremented, leading
  to the queue logic just plain not working.

* HAL_EIO means "descriptor wasn't valid", versus "not finished, don't
  continue." So don't stop processing descriptors when HAL_EIO is hit.

* Don't service frame completion from the beacon queue.  It isn't currently
  fully setup like a real queue and the first attempt at accessing the
  queue lock will panic the kernel.

Tested:

* AR9380, STA mode

This commit is brought to you by said AR9380 in STA mode.
2012-08-20 06:11:04 +00:00
adrian
684602be6d Advance the descriptor pointer by sc->sc_tx_desclen bytes, rather than
sizeof(struct ath_desc).  This isn't correct for EDMA TX descriptors.

This popped up during iperf tests. Ping tests never created frames that
had enough segments to overflow into a second descriptor.  However,
an iperf TCP test would do that after a few seconds; the second descriptor
would almost always certainly have garbage.

Tested:

* AR9380, STA mode
* AR9280, STA mode (802.11n TX, legacy TX)
2012-08-20 06:02:09 +00:00
adrian
45631b6e62 Make sure all of the buffers are printed, rather than (n-1). 2012-08-20 05:47:07 +00:00
adrian
a561db427c Extend the TX descriptor debug printing to be properly aware of
EDMA code.

* create a new TX EDMA descriptor struct to represent TX EDMA descriptors
  when doing debugging;
* implement an EDMA printing function which:
  + hardcodes the TX map size to 4 for now;
  + correctly prints out the number of segments - there's one descriptor
    for up to 4 buffers (segments), not one for each segment;
  + print out 4 DS buffer and len pointers;
  + print out the correct number of DWORDs in the TX descriptor.

TODO:

* Remove all of the hard-coded stuff. Ew.
2012-08-19 02:22:16 +00:00
adrian
5ab9e66230 When assembling the descriptor list, make sure that the "first" descriptor
is marked correctly.

The existing logic assumed that the first descriptor is i == 0, which
doesn't hold for EDMA TX.  In this instance, the first time filltxdesc()
is called can be up to i == 3.

So for a two-buffer descriptor:

* firstSeg is set to 0;
* lastSeg is set to 1;
* the ath_hal_filltxdesc() code will treat it as the last segment in
  a descriptor chain and blank some of the descriptor fields, causing
  the TX to stop.

When firstSeg is set to 1 (regardless of lastSeg), it overrides the
lastSeg setting.  Thus, ath_hal_filltxdesc() won't blank out these
fields.

Tested: AR9380, STA mode.  With this, association is successful.
2012-08-19 02:16:22 +00:00
kib
ba66fb6ab5 Fix build 2012-08-15 15:53:27 +00:00
adrian
0424c6d691 Extend the non-aggregate TX descriptor chain routine to be aware of:
* the descriptor ID, and
* the multi-buffer support that the EDMA chips support.

This is required for successful MAC transmission of multi-descriptor
frames.  The MAC simply hangs if there are NULL buffers + 0 length pointers,
but the descriptor did have TxMore set.

This won't be done for the 11n aggregate path, as that will be modified
to use the newer API (ie, ath_hal_filltxdesc() and then set first|middle|
last_aggr), which will deprecate some of the current code.

TODO:

* Populate the numTxMaps field in the HAL, then make sure that's fetched
  by the driver.  Then I can undo that hack.

Tested:

* AR9380, AP mode, TX'ing non-aggregate 802.11n frames;
* AR9280, STA/AP mode, doing aggregate and non-aggregate traffic.
2012-08-15 08:14:16 +00:00
adrian
709a1cd8d6 Bump up the rate control table size to incorporate 3 stream entries. 2012-08-15 08:06:06 +00:00
adrian
39a34bfaf8 Remove this comment, it's no longer relevant. 2012-08-15 07:56:48 +00:00
adrian
bfb736b884 Extend the duration calculations to work with three and four stream
rates.
2012-08-15 07:52:49 +00:00
adrian
6751f75569 Add a missing comma.
Pointy hat to: me, for not doing a 'clean' build first.
2012-08-15 07:50:42 +00:00
adrian
3fb893aa48 Add 3 stream rates to the sample rate control module. 2012-08-15 07:32:34 +00:00
adrian
927418e50b Extend the sample mask from 32 bits to 64 bits.
This is required to support > MCS15 as more than 32 bit rate entries are
suddenly available.

This is quite messy - instead of doing typecasts at each mask operation,
this should be migrated to use a macro and have that do the typecast.
2012-08-15 07:10:10 +00:00
adrian
2e17c6efe7 Implement a sequential descriptor ID value and stuff it in the ath_buf.
This will be used by the EDMA TX code to assign descriptor IDs in order
to provide some debugging.
2012-08-15 06:48:34 +00:00
adrian
df99e094f3 Dump out the TX FIFO depth. 2012-08-14 22:34:22 +00:00
adrian
efa454776b Break out the TX completion code into a separate function, so it can be
re-used by the upcoming EDMA TX completion code.

Make ath_stoptxdma() public, again so the EDMA TX code can use it.

Don't check for the TXQ bitmap in the ISR when doing EDMA work as it
doesn't apply for EDMA.
2012-08-14 22:32:20 +00:00
adrian
998c54f304 Add an assertion to check that the given TXQ is _not_ locked. 2012-08-14 22:30:17 +00:00
adrian
f315189440 Revert the ath_tx_draintxq() method, and instead teach it the minimum
necessary to "do" EDMA.

It was just using the TX completion status for logging information about
the descriptor completion.  Since with EDMA we don't know this without
checking the TX completion FIFO, we can't provide this information.
So don't.
2012-08-12 00:46:15 +00:00
adrian
815b21bf9d Break out ath_draintxq() into a method and un-methodize ath_tx_processq().
Now that I understand what's going on with this, I've realised that
it's going to be quite difficult to implement a processq method in
the EDMA case.  Because there's a separate TX status FIFO, I can't
just run processq() on each EDMA TXQ to see what's finished.
i have to actually run the TX status queue and handle individual
TXQs.

So:

* unmethodize ath_tx_processq();
* leave ath_tx_draintxq() as a method, as it only uses the completion status
  for debugging rather than actively completing the frames (ie, all frames
  here are failed);
* Methodize ath_draintxq().

The EDMA ath_draintxq() will have to take care of running the TX
completion FIFO before (potentially) freeing frames in the queue.

The only two places where ath_tx_draintxq() (on a single TXQ) are used:

* ath_draintxq(); and
* the CABQ handling in the beacon setup code - it drains the CABQ before
  populating the CABQ with frames for a new beacon (when doing multi-VAP
  operation.)

So it's quite possible that once I methodize the CABQ and beacon handling,
I can just drop ath_tx_draintxq() in its entirety.

Finally, it's also quite possible that I can remove ath_tx_draintxq()
in the future and just "teach" it to not check the status when doing
EDMA.
2012-08-12 00:37:29 +00:00
adrian
ce09176548 Extend the beacon code slightly to support AP mode beaconing for the
EDMA HAL hardware.

* The EDMA HAL code assumes the nexttbtt and intval values are in TU/8
  units, rather than TU.  For now, just "hack" around that here, at least
  until I code up something to translate it in the HAL.
* Setup some different TXQ flags for EDMA hardware.
* The EDMA HAL doesn't support setting the first rate series via
  ath_hal_setuptxdesc() - instead, a call to ath_hal_set11nratescenario()
  is always required.  So for now, just do an 11n rate series setup
  for EDMA beacon frames.

This allows my AR9380 to successfully transmit beacon frames.

However, CABQ TX and all normal data frame TX and TX completion is
still not functional and will require some more significant code churn
to make work.
2012-08-11 23:26:19 +00:00
adrian
decb55dbb5 Add the AR9380 HAL to the TX descriptor debugging, in order to dump all
of the descriptor contents.
2012-08-11 22:39:27 +00:00
adrian
ac90f5100d Add the AR9300 HAL ID in to the 11n check routine.
I was having TX hang issues, which I root caused to having the
legacy ath_hal_setupxtxdesc() called, rather than the 11n rate scenario
setup code.  This meant that rate control information wasn't being
put into frames, causing the MAC to stall/hang.
2012-08-11 22:25:28 +00:00
adrian
95f393e2ff Begin fleshing out the TX FIFO support.
* Add ATH_TXQ_FIRST() for easy tasting of what's on the list;
* Add an "axq_fifo_depth" for easy tracking of how deep the current
  FIFO is;
* Flesh out the handoff (mcast, hw) functions;
* Begin fleshing out a TX ISR proc, which tastes the TX status FIFO.

The legacy hardware stuffs the TX completion at the end of the final frame
descriptor (or final sub-frame when doing aggregate.)  So it's feasible
to do a per-TXQ drain and process, as the needed info is right there.

For EDMA hardware, there's a separate TX completion FIFO.  So the TX
process routine needs to read the single FIFO and then process the
frames in each hardware queue.

This makes it difficult to do a per-queue process, as you'll end up with
frames in the TX completion FIFO for a different TXQ to the one you've
passed to ath_tx_draintxq() or ath_tx_processq().

Testing:

I've tested the TX queue and TX completion code in hostap mode on an
AR9380.  Beacon frames successfully transmit and the completion routine
is called.  Occasional data frames end up in TXQ 1 and are also
successfully completed.

However, this requires some changes to the beacon code path as:

* The AR9380 beacon configuration API is now in TU/8, rather than
  TU;
* The AR9380 TX API requires the rate control is setup using a call
  to setup11nratescenario, rather than having the try0 series setup
  (rate/tries for the first series); so the beacon won't go out.

I'll follow this up with commits to the beacon code.
2012-08-11 22:20:28 +00:00
adrian
49a4eabe45 Commit device IDs for the (eventually upcoming) AR9380 HAL.
Obtained from:	Qualcomm Atheros, Linux ath9k
2012-08-07 23:45:43 +00:00
adrian
98bad868d8 Correct re-initialise the link pointer to be the final descriptor in
the last buffer.

This fixes traffic stalls that were occuring with stuck beacon events.

PR:		kern/170433
2012-08-07 00:42:46 +00:00
adrian
c74ad1c589 Remove unnecessary debugging printf()s. 2012-08-06 22:54:10 +00:00
adrian
8624d30ccc Migrate the 802.11n ath_hal_chaintxdesc() API to use a buffer/segment
array, similar to what filltxdesc() uses.

This removes the last reference to ds_data in the TX path outside of
debugging statements.  These need to be adjusted/fixed.

Tested:

* AR9280 STA/AP with iperf TCP traffic
2012-08-05 11:24:21 +00:00
adrian
71347eff19 Migrate the ath_hal_filltxdesc() API to take a list of buffer/seglen values.
The existing API only exposes 'seglen' (the current buffer (segment) length)
with the data buffer pointer set in 'ds_data'.  This is fine for the legacy
DMA engine but it won't work for the EDMA engines.

The EDMA engine has a significantly different TX descriptor layout.

* The legacy DMA engine had a ds_data pointer at the same offset in the
  descriptor for both TX and RX buffers;
* The EDMA engine has no ds_data for RX - the data is DMAed after the
  descriptor;
* The EDMA engine has support for 4 TX buffer/segment pairs in the TX
  DMA descriptor;
* The EDMA TX completion is in a different FIFO, and the driver will
  'link' the status completion entry to a QCU by a "QCU ID".
  I don't know why it's just not filled in by the hardware, alas.

So given that, here are the changes:

* Instead of directly fondling 'ds_data' in ath_desc, change the
  ath_hal_filltxdesc() to take an array of buffer pointers as well
  as segment len pointers;
* The EDMA TX completion status wants a descriptor and queue id.
  This (for now) uses bf_state.bfs_txq and will extract the hardware QCU
  ID from that.
* .. and this is ugly and wasteful; it should change to just store
  the QCU in the bf_state and save 3/7 bytes in the process.

Now, the weird crap:

* The aggregate TX path was using bf_state->bfs_txq for the TXQ, rather than
  taking a function argument.  I've tidied that up.
* The multicast queue frames get put on a software TXQ and then that is
  appended to the hardware CABQ when appropriate.  So for now, make sure
  that bf_state->bfs_txq points at the CABQ when adding frames to the
  multicast queue.
* .. but the multicast queue TX path for now doesn't use the software
  queue and instead
  (a) directly sets up the descriptor contents at that point;
  (b) the frames on the vap->avp_mcastq are then just appended wholesale
      to the CABQ.
  So for now, I don't have to worry about making the multicast path
  work with aggregation or the per-TID software queue. Phew.

What's left to do:

* I need to modify the 11n ath_hal_chaintxdesc() API to do the same.
  I'll do that in a subsequent commit.
* Remove bf_state.bfs_txq entirely and store the QCU as appropriate.
* .. then do the runtime "is this going on the right HWQ?" checks using
  that, rather than comparing pointer values.

Tested on:

* AR9280 STA/AP
* AR5416 STA/AP
2012-08-05 10:12:27 +00:00
adrian
2fc73d062f Fix an issue that crept in with the previous descriptor tidyup.
When forming aggregates, the last descriptor was now not being
correctly setup - instead, the "setuplasttxdesc" call was being
handed the first descriptor in the last subframe, rather than the
last descriptor in the last subframe.

This showed up as "bad series0 hwrate" messages, as the final
descriptor just didn't have any of the rate control information
squirreled away.

Tested:
	* AR9280 STA -> 11n AP, iperf TCP
2012-08-02 20:14:45 +00:00
adrian
95def5f927 Fix a case of "mis-located braces".
PR:		kern/170302
2012-08-01 00:18:02 +00:00
adrian
01f36653db Allow 802.11n hardware to support multi-rate retry when RTS/CTS is
enabled.

The legacy (pre-802.11n) hardware doesn't support this - although
the AR5212 era hardware supports MRR, it doesn't have all the bits
needed to support MRR + RTS/CTS.  The AR5416 and later support
a packet duration and RTS/CTS flags per rate scenario, so we should
support it.

Tested:

* AR9280, STA

PR:		kern/170302
2012-07-31 23:54:15 +00:00
adrian
fb83e10b61 Shuffle the call to ath_hal_setuplasttxdesc() to _after_ the rate control
code is called and remove it from ath_buf_set_rate().

For the legacy (non-11n API) TX routines, ath_hal_filltxdesc() takes care
of setting up the intermediary and final descriptors right, complete
with copying the rate control info into the final descriptor so the
rate modules can grab it.

The 11n version doesn't do this - ath_hal_chaintxdesc() doesn't
copy the rate control bits over, nor does it clear isaggr/moreaggr/
pad delimiters.  So the call to setuplasttxdesc() is needed here.

So:

* legacy NICs - never call the 11n rate control stuff, so filltxdesc
  copies the rate control info right;
* 11n NICs transmitting legacy or 11n non-aggregate frames -
  ath_hal_set11nratescenario() is called to setup rate control and
  then ath_hal_filltxdesc() chains them together - so the rate control
  info is right;
* 11n aggregate frames - set11nratescenario() is called, then
  ath_hal_chaintxdesc() is called to chain a list of aggregate and subframes
  together. This requires a call to ath_hal_setuplasttxdesc() to complete
  things.

Tested:

* AR9280 in station mode

TODO:

* I really should make sure that the descriptor contents get blanked
  out correctly or garbage left over from aggregate frames may show
  up in non-aggregate frames, leading to badness.
2012-07-31 17:08:29 +00:00
adrian
9b725a7ac6 Push the rate control and descriptor chaining into the descriptor "set"
functions, for both legacy and 802.11n.

This will simplify supporting the EDMA chipsets as these two descriptor
setup functions can just be overridden in their entirety, hiding all of
the subtle differences in setting things up.

It's not a permanent solution, as eventually the AR5416 HAL should grow
similar versions of the 11n descriptor functions and then those can be
used.

TODO:

* Push the "clr11naggr" call into the legacy setds, just to ensure
  that retried frames don't end up with the aggregate bits set
  inappropriately;
* Remove the "setlasttxdesc" call from the 11n TX path and push it
  into setds_11n.
* Ensure that setds_11n will work correctly for non-aggregate frames;
* .. and then when it does, just unconditionally call "setds_11n" for
  11n NICs and "setds" for non-11n NICs.
2012-07-31 16:41:09 +00:00
adrian
c9862ba17f Migrate some more TX side setup routines to be methods. 2012-07-31 03:09:48 +00:00
adrian
22fbf81ca5 Break out the hardware handoff and TX DMA restart code into methods.
These (and a few others) will differ based on the underlying DMA
implementation.

For the EDMA NICs, simply stub them out in a fashion which will let
me focus on implementing the necessary descriptor API changes.
2012-07-31 02:28:32 +00:00
adrian
e538814cc9 Placeholder ioctl for an upcoming rate control statistics API change. 2012-07-31 02:18:10 +00:00
adrian
6009a2eb43 Shuffle the rate control call to be consistent with non-aggregate TX.
The correct ordering for non-aggregate TX is:

* call ath_hal_setuptxdesc() to setup the first TX descriptor complete
  with the first TX rate/try count;
* call ath_hal_setupxtxdesc() to setup the multi-rate retry;
* .. or for 802.11n NICs, call ath_hal_set11nratescenario() for MRR and
  802.11n flags;
* then call ath_hal_filltxdesc() to setup intermediary descriptors
  in a multi-descriptor single frame.

The call to ath_hal_filltxdesc() routines seem to correctly (consistently?)
handle the intermediary descriptor flags, including copying the rate
control information to the final descriptor in the frame.  That's used
by the rate control module rather than the hardware.

Tested:

* Only on AR9280 STA mode, however it should work on other chips in
  both STA and AP mode.
2012-07-29 09:23:32 +00:00
adrian
42e4d59244 Fix breakage introduced in r238824 - correctly calculate the descriptor
wrapping.

The previous code was only wrapping descriptor "block" boundaries rather
than individual descriptors.  It sounds equivalent but it isn't.

r238824 changed the descriptor allocation to enforce that an individual
descriptor doesn't wrap a 4KiB boundary rather than the whole block
of descriptors.  Eg, for TX descriptors, they're allocated in blocks
of 10 descriptors for each ath_buf (for scatter/gather DMA.)
2012-07-29 08:52:32 +00:00
adrian
1649434dac Flesh out the multi-rate retry capability.
The existing method for testing for MRR is to call the "SetupXTXDesc"
HAL method and see if it returns AH_TRUE or AH_FALSE.  This capability
explicitly lists what number of multi-rate attempts are possible.

"1" means "one rate attempt supported".
2012-07-28 07:28:08 +00:00
adrian
8a80cab981 Commit missing #define from a previous check-in.
The AR9300 and later have an 8-deep TX FIFO for each hardware queue.
2012-07-28 07:25:00 +00:00
adrian
f694295168 Flesh out the initial TX FIFO storage for each hardware TX queue. 2012-07-28 04:42:05 +00:00
adrian
f918a23c85 Add a missing call to ath_txdma_teardown(). 2012-07-28 04:40:52 +00:00
adrian
b409f92b1f Tidy up the TX status fields a little and add a couple new flags.
* shuffle things around so things fall on natural padding boundaries;
* add a couple of new flags to specify LDPC and whether to switch to the
  low power RX chain configuration after this TX has completed.

Obtained from:	Qualcomm Atheros
2012-07-27 12:08:49 +00:00
adrian
c6bb14ece4 Add STBC TX support for AR5416 HAL chips.
Specifically, however:

* AR9280 and later support 1-stream STBC RX;
* AR9280 and AR9287 support 1-stream STBC TX.

The STBC support isn't announced (yet) via net80211 and it isn't at all
chosen by the rate control code, so there's no real consumer of this
yet.

Obtained from:	Qualcomm Atheros
2012-07-27 11:54:05 +00:00
adrian
8fb5beb954 Add a STBC TX flag.
Obtained from:	Qualcomm Atheros
2012-07-27 11:45:57 +00:00
adrian
ac6a93aa10 Add some comments about what the two fields mean. 2012-07-27 11:44:48 +00:00
adrian
d70054983a Introduce a couple more fields in the rate scenario setup as part of
(future) TPC support in the AR9300 HAL.

This is effectively a no-op for the moment as (a) TPC isn't really
supported, (b) the AR9300 HAL isn't yet public, and (c) the existing
HAL code doesn't use these fields.

Obtained from:	Qualcomm Atheros
2012-07-27 11:43:10 +00:00
adrian
df2495f2ff Bring this API in line with what the reference driver and Linux ath9k
was doing.

Obtained from:	Qualcomm Atheros, Linux ath9k
2012-07-27 11:23:24 +00:00
adrian
99b2311120 Allocate a descriptor ring for EDMA TX completion status.
Configure the hardware with said ring physical address and size.
2012-07-27 10:41:54 +00:00
adrian
c4ee11cf19 Modify ath_descdma_cleanup() to handle ath_descdma instances with no
buffers.

ath_descdma is now being used for things other than the classical
combination of ath_buf + ath_desc allocations.  In this particular case,
don't try to free and blank out the ath_buf list if it's not passed in.
2012-07-27 10:38:17 +00:00
adrian
8c0c6fa06f Migrate the descriptor allocation function to not care about the number
of buffers, only the number of descriptors.

This involves:

* Change the allocation function to not use nbuf at all;
* When calling it, pass in "nbuf * ndesc" to correctly update how many
  descriptors are being allocated.

Whilst here, fix the descriptor allocation code to correctly allocate
a larger buffer size if the Merlin 4KB WAR is required.  It overallocates
descriptors when allocating a block that doesn't ever have a 4KB boundary
being crossed, but that can be fixed at a later stage.
2012-07-27 05:48:42 +00:00
adrian
e8e08eee9e Refactor out the descriptor allocation code from the buffer allocation
code.

The TX EDMA completion path is going to need descriptors allocated but
not any buffers.  This code will form the basis for that.
2012-07-27 05:34:45 +00:00
adrian
4053ec873e Add a new HAL method - the AR93xx and later NICs have a separate
TX descriptor ring for TX status completion. This API call will pass
the allocated buffer details to the HAL.
2012-07-24 01:18:19 +00:00
adrian
142df5fc8e Modify ath_descdma_setup() to take a descriptor size parameter.
The AR9300 and later descriptors are 128 bytes, however I'd like to make
sure that isn't used for earlier chips.

* Populate the TX descriptor length field in the softc with
  sizeof(ath_desc)

* Use this field when allocating the TX descriptors

* Pre-AR93xx TX/RX descriptors will use the ath_desc size; newer ones will
  query the HAL for these sizes.
2012-07-23 23:40:13 +00:00
adrian
d4acb4d1d5 Revert this; it wasn't supposed to be part of this commit. 2012-07-23 03:55:19 +00:00
adrian
c89f08ceb9 Begin separating out the TX DMA setup in preparation for TX EDMA support.
* Introduce TX DMA setup/teardown methods, mirroring what's done in
  the RX path.

  Although the TX DMA descriptor is setup via ath_desc_alloc() /
  ath_desc_free(), there TX status descriptor ring will be allocated
  in this path.

* Remove some of the TX EDMA capability probing from the RX path and
  push it into the new TX EDMA path.
2012-07-23 03:52:18 +00:00
adrian
505896c97a Flesh out a new DMA map for the EDMA TX completion status, as well
as a lock to go with that whole code path.
2012-07-23 02:49:25 +00:00
adrian
f20813da65 Begin modifying the descriptor allocation functions to support a variable
sized TX descriptor.

This is required for the AR93xx EDMA support which requires 128 byte
TX descriptors (which is significantly larger than the earlier
hardware.)
2012-07-23 02:26:33 +00:00
adrian
0ca2458360 Introduce a rate table TLV so rate table statistics consumers
know how to map rix -> rate code.
2012-07-20 02:17:48 +00:00
adrian
4939a38c3f Bump this up to match what the HAL is at now. 2012-07-20 01:41:18 +00:00
adrian
ff4507cc5c Enable the basic node-based rate control statistics via an ioctl(). 2012-07-20 01:36:46 +00:00
adrian
233485e7d2 Add a per-node rate control routine for each rate control module.
For now, the only module implement is 'sample', and that's only partially
implemented.  The main issue here with reusing this structure in userland
is that it uses 'rix' everywhere, which requires the userland code to
have access to the current HAL rate table.

For now, this is a very large work in progress.

Specific details:

* The rate control information is per-node at the moment and wrapped
  in a TLV, to ease parsing and backwards compatibility.
* .. but so I can be slack for now, the userland statistics are just
  a copy of the kernel-land sample node state.
* However, for now use a temporary copy and change the rix entries
  to dot11rate entries to make it slightly easier to eyeball.

Problems:

* The actual rate information table is unfortunately indexed by rix
  and it doesn't contain a rate code.  So the userland side of this
  currently has no way to extract out a mapping.

TODO:

* Add a TLV payload to dump out the rate control table mapping so
  'rix' can be turned into a dot11 / MCS rate.
* .. then remove the temporary copy.
2012-07-20 01:36:02 +00:00
adrian
bfcf6a8af8 Create an ioctl API for fetching the current rate control information. 2012-07-20 01:27:20 +00:00
adrian
be9f867582 Prepare for (re)using this header file in userland.
Remove the inlined code from the header file if it's compiled in userland.
It's not required and it shouldn't be there in the first place.
2012-07-20 00:47:23 +00:00
adrian
0dca43b8b6 Convert the TX path to use the new HAL methods for accessing the
TX descriptor link pointers.

This is required for the AR93xx and later chipsets.

The RX path is slightly different - the legacy RX path directly
accesses ath_desc->ds_link for now, however this isn't at all done
for EDMA (FIFO) RX.

Now, for those performing a little software archeology here:

This is all a bit sub-optimal. "struct ath_desc" is only really relevant
for the pre-AR93xx NICs - where ds_link and ds_data is always in the
same location.

The AR93xx and later NICs have different descriptor layouts altogether.

Now, for AR93xx and later NICs, you should never directly reference
ds_link and ds_data, as:

* the RX descriptors don't have either - the data is _after_ the RX
  descriptor.  They're just one large buffer.  There's also no need for
  a per-descriptor RX buffer size as they're all fixed sizes.

* the TX descriptors have 4 buffer and 4 length fields _and_ a link
  pointer.  Each frame takes up one TX FIFO pointer, but it can contain
  multiple subframes (either multiple frames in a buffer, and/or
  multiple frames in an aggregate/RIFS burst.)

* .. so, when TX frames are queued to a hardware queue, the link
  pointer is ONLY for buffers in that frame/aggregate.  The next frame
  starts in a new FIFO pointer.

* Finally, descriptor completion status is in a different ring.
  I'll write something up about that when its time to do so.

This was inspired by Linux ath9k and the reference driver but is a
reimplementation.

Obtained from:	Linux ath9k, Qualcomm Atheros
2012-07-19 03:51:16 +00:00
adrian
158ed614ca Use HAL_NUM_RX_QUEUES rather than a magic constant. 2012-07-19 03:18:15 +00:00
adrian
770c2e2c10 Break out the TX descriptor link field into HAL methods.
The DMA FIFO chips (AR93xx and later) differ slightly to th elegacy
chips:

* The RX DMA descriptors don't have a ds_link field;
* The TX DMA descriptors have a ds_link field however at a different
  offset.

This is a reimplementation based on what the reference driver and ath9k
does.

A subsequent commit will enable it in the TX and beacon paths.

Obtained from:	Linux ath9k, Qualcomm Atheros
2012-07-19 02:25:14 +00:00
adrian
c486d0bf45 Handle RX Keymiss events.
The AR9003 series NICs implement a separate RX error to signal that a
Keycache miss occured.  The earlier NICs would not set the key index
valid bit.

I'll dig into the difference between "no key index bit set" and "keycache
miss".
2012-07-15 20:51:41 +00:00
adrian
f3c1c1a422 Log the number of handled decsriptors and valid descriptors when
hitting RXEOL.
2012-07-15 20:48:21 +00:00
adrian
f986686460 Fix build breakage when one isn't building with IEEE80211_SUPPORT_SUPERG.
Noticed by:	mav
2012-07-14 12:15:20 +00:00
adrian
5c389e063d Merge in some other features from the legacy RX path:
* wrap the RX proc calls in the RX refcount;
* call the DFS checking, fast frames staging and TX rescheduling if
  required.

TODO:

* figure out if I can just make "do TX rescheduling" mean "schedule
  TX taskqueue" ?
2012-07-14 07:56:47 +00:00
adrian
6036c7128d Make sure that 'rs' is pointing to the correct RX status. 2012-07-14 05:53:03 +00:00
adrian
852b8a4cb1 Ensure that error is set.
Noticed by:	rui
2012-07-14 05:51:54 +00:00
adrian
491bca3ef4 Change the RX EDMA path to first complete the FIFO, then re-populate it
with fresh descriptors, before handling the frames.

Wrap it all in the RX locks.

Since the FIFO is very shallow (16 for HP, 128 for LP) it needs to be
drained and replenished very quickly.  Ideally, I'll eventually move this
RX FIFO drain/fill into the interrupt handler, only deferring the actual
frame completion.
2012-07-14 02:52:48 +00:00
adrian
79bcabb67e Don't free the descriptor allocation/map if it doesn't exist.
I missed this in my previous commit.
2012-07-14 02:47:16 +00:00
adrian
1a7f56bc4c Create an RX queue lock.
Ideally these locks would go away and there'd be a single driver lock,
like what iwn(4) does.  I'll worry about that later.
2012-07-14 02:22:17 +00:00
adrian
00e578733c Fix EDMA RX to actually work without panicing the machine.
I was setting up the RX EDMA buffer to be 4096 bytes rather than the
RX data buffer portion.  The hardware was likely getting very confused
and DMAing descriptor portions into places it shouldn't, leading to
memory corruption and occasional panics.

Whilst here, don't bother allocating descriptors for the RX EDMA case.
We don't use those descriptors. Instead, just allocate ath_buf entries.
2012-07-14 02:07:51 +00:00
jhb
ec38b41c3e Cast a bus address to a uintmax_t for a debug printf to fix the build on
arm.
2012-07-11 15:04:20 +00:00
jhb
f7caeaead4 Map ATH_KTR_* to 0 when ATH_DEBUG is not defined. This effectively NOPs
out their use in that case.
2012-07-11 12:10:13 +00:00
jhb
26b7689ce1 Fix build when ATH_DEBUG is not defined. 2012-07-10 18:57:05 +00:00
adrian
673c1e65d7 Commit missing flags for the high/low priority (HP/LP) RX queues.
Noticed by:	everyone
2012-07-10 18:30:20 +00:00
adrian
1e8e6a0b77 Add some debugging and comments about what's going on when reinitialising
the FIFO.

I still see some corner cases where no RX occurs when it should be
occuring.  It's quite possible that there's a subtle race condition
somewhere; or maybe I'm not programming the RX queues right.

There's also no locking here yet, so any reset/configuration path
state change (ie, enabling/disabling receive from the ioctl, net80211
taskqueue, etc) could quite possibly confuse things.
2012-07-10 07:45:47 +00:00
adrian
f0a77e77df Flip on EDMA RX of both HP and LP queue frames.
Yes, this is in the legacy interrupt path.  The NIC does support
MSI but I haven't yet sat down and written that code.
2012-07-10 07:43:31 +00:00
adrian
b89b88c83b Migrate the ATH_KTR_* fields out to if_ath_debug.h . 2012-07-10 06:11:39 +00:00
adrian
74cba80cf0 Print the TX buffer if this error condition is asserted.
I need to figure out why this is occuring.  Hopefully I can get enough
descriptor dumps to figure it out.
2012-07-10 06:10:49 +00:00
adrian
4ac74af2a9 Add/fix EDMA RX behaviour.
* For now, kickpcu should hopefully just do nothing - the PCU doesn't need
  'kicking' for Osprey and later NICs. The PCU will just restart once
  the next FIFO entry is pushed in.

* Teach "proc" about "dosched", so it can be used to just flush the
  FIFO contents without adding new FIFO entries.

* .. and now, implement the RX "flush" routine.

* Re-initialise the FIFO contents if the FIFO is empty (the DP is NULL.)
  When PCU RX is disabled (ie, writing RX_D to the RX configuration
  register) then the FIFO will be completely emptied.  If the software FIFO
  is full, then no further descriptors are pushed into the FIFO and
  things stall.

This all requires much, much more thorough stress testing.
2012-07-10 06:05:42 +00:00
adrian
af0280285f Reorder these so they match the capability enum order. 2012-07-10 03:48:07 +00:00
adrian
782d38e70a Implement EDMA RX for AR93xx and later chips.
This is inspired by ath9k and the reference driver, but it's a new
implementation of the RX FIFO handling.

This has some issues - notably the FIFO needs to be reprogrammed when
the chip is reset.
2012-07-10 00:08:39 +00:00
adrian
5dbf12e2ad Convert sc_rxpending to a per-EDMA queue, and use that for the legacy code.
Prepare ath_rx_pkt() to handle multiple RX queues, and default the legacy
RX queue to use the HP queue.
2012-07-10 00:02:19 +00:00
adrian
6b825e43a0 Add some AR9300 HAL descriptor definition changes.
* Add a couple of RX errors;
* Add the spectral scan PHY error code;
* extend the RX flags to be a 16 bit field, rather than an 8 bit field;
* Add a new RX flag.

Obtained from:	Qualcomm Atheros
2012-07-09 23:58:22 +00:00
adrian
2977d109d8 Further preparations for the RX EDMA support.
Break out the DMA descriptor setup/teardown code into a method.
The EDMA RX code doesn't allocate descriptors, just ath_buf entries.
2012-07-09 08:37:59 +00:00
adrian
90ac8e0adb Introduce the EDMA related HAL capabilities.
Whilst here, fix a typo in a previous commit.

Obtained from:	Qualcomm Atheros
2012-07-09 07:31:26 +00:00
adrian
de86634e9a Extend the RX HAL API to include the RX queue identifier.
The AR93xx and later chips support two RX FIFO queues - a high and low
priority queue.

For legacy chips, just assume the queues are high priority.

This is inspired by the reference driver but is a reimplementation of
the API and code.
2012-07-09 07:19:11 +00:00
adrian
fd33b54fca Extend the debugging flags to include some AR9300 HAL related options.
Obtained from:	Qualcomm Atheros
2012-07-09 06:41:18 +00:00
adrian
682d2c5a3b Extend the RX descriptor completion debugging to log the larger
AR93xx receive descriptors.

This isn't entirely complete - the AR93xx and later descriptors
don't have a link/buffer pointer; the descriptor contents just
start.
2012-07-09 06:39:46 +00:00
adrian
a596d3e5b3 Add a debug category for RX EDMA. 2012-07-09 05:23:02 +00:00
adrian
8af1316f3a Begin abstracting out the RX path in preparation for RX EDMA support.
The RX EDMA support requires a modified approach to the RX descriptor
handling.

Specifically:

* There's now two RX queues - high and low priority;
* The RX queues are implemented as FIFOs; they're now an array of pointers
  to buffers;
* .. and the RX buffer and descriptor are in the same "buffer", rather than
  being separate.

So to that end, this commit abstracts out most of the RX related functions
from the bulk of the driver.  Notably, the RX DMA/buffer allocation isn't
updated, primarily because I haven't yet fleshed out what it should look
like.

Whilst I'm here, create a set of matching but mostly unimplemented EDMA
stubs.

Tested:

  * AR9280, station mode

TODO:

  * Thorough AP and other mode testing for non-EDMA chips;
  * Figure out how to allocate RX buffers suitable for RX EDMA, including
    correctly setting the mbuf length to compensate for the RX descriptor
    and completion status area.
2012-07-03 06:59:12 +00:00
adrian
3543a6a83d .. And fix another typo. Grr. 2012-07-02 06:07:46 +00:00
adrian
dfec3def9a Fix another typo. 2012-07-02 06:06:27 +00:00
adrian
614d3d6a0e Fix typo. 2012-07-02 06:05:25 +00:00
adrian
7222dd809d Bring over some further HAL capabilities from the Atheros HAL, as well
as an EDMA check function.

For the AR9003 and later NICs, different TX/RX DMA and descriptor handling
code will be conditional on the EDMA check.

Obtained from:	Qualcomm Atheros
2012-07-02 06:02:12 +00:00
adrian
6a3edead78 Add in some further changes from the AR9300 HAL:
* Add a new ANI variable, for AR9003 and later chips;
* The AR9003 and later series chips support two RX queues now, so start
  down the road of supporting that;
* Add some new TX queue types - uAPSD is possible on earlier chips,
  but PAPRD is relevant to AR9003 and later.

Obtained from:	Qualcomm Atheros, Linux ath9k
2012-07-01 05:14:24 +00:00
adrian
4eb10c74bc Migrate the MAC/BB hang structures out from ar5416_misc.h into the HAL.
The ar9300 HAL also uses these types, so it makes no sense to duplicate
them.
2012-07-01 03:15:18 +00:00
adrian
5d4bc9f384 Bring over capabilities for the AR9300 and later HAL. 2012-07-01 02:44:36 +00:00
adrian
4a4fdd3615 Add OS_MEMCMP(). 2012-07-01 02:37:04 +00:00
adrian
b5dff52250 Fix the HAL debugging to only use one bit to mark a message as unmaskable.
Whilst I'm here, remove the duplication of the #define.
2012-07-01 02:34:32 +00:00
adrian
dbdcceb527 Fix a subtle corner case surrounding the handling of OFDM restart along
with AMPDU aggregate delimiters.

If there's an OFDM restart during an aggregate, the hardware ACKs
the previous frame, but communicates the RXed frame to the hardware
as having had CRC delimiter error + OFDM_RESTART phy error.
The frame however didn't have a CRC error and since the hardware ACKed
the aggregate to the sender, it thinks the frame was received.

Since I have no idea how often this occurs in the real world, add a
debug statement so trigger whenever this occurs.  I'd appreciate an
email if someone finds this particular situation is triggered.
2012-06-27 05:23:33 +00:00
adrian
ac80278535 Bring over some new typedefs as part of the AR9300 HAL import. 2012-06-27 03:24:27 +00:00
adrian
5dd028377a Remove duplicate entries. 2012-06-27 03:00:29 +00:00
adrian
f6d1a69477 Bring over the initial 802.11n bluetooth coexistence support code.
The Linux ath9k btcoex code is based off of this code.

Note this doesn't actually implement functional btcoex; there's some
driver glue and a whole lot of verification that is required.

On the other hand, I do have the AR9285+BT and AR9287+BT NICs which
this code supports..

Obtained from:	Qualcomm Atheros, Linux ath9k
2012-06-26 22:16:53 +00:00
adrian
4183957bce Make sure the BAR TX session pause is correctly unpaused when a node
is reassociating.

PR:		kern/169432
2012-06-26 07:56:15 +00:00
adrian
1b86b779b2 In a complete lack of foresight on my part, my previous commit broke
the assumption that ath_softc doesn't change size based on build time
configuration.

I picked up on this because suddenly radar stuff didn't work; and
although the ath_dfs code was setting sc_dodfs=1, the main ath driver
saw sc_dodfs=0.

So for now, include opt_ath.h in driver source files.  This seems like
the sane thing to do anyway.

I'll have to do a pass over the code at some later stage and turn
the radiotap TX/RX structs into malloc'ed memory, rather than in-line
inside of ath_softc.  I'd rather like to keep ath_softc the same
layout regardless of configuration parameters.

Pointy hat to: 	adrian
2012-06-24 08:47:19 +00:00
adrian
b5c3afbe7d Shuffle these initialisations to where they should be. 2012-06-24 08:28:06 +00:00
adrian
c5fe4faa45 Change the ath_dfs_process_phy_err() method to take an mbuf rather than
a buffer pointer.

For large radar pulses, the AR9130 and later will return a series of
FFT results for software processing.  These can overflow a single 2KB
buffer on longer pulses.  This would result in undefined buffer behaviour.
2012-06-24 08:09:06 +00:00
adrian
a5794ac4d0 Introduce an optional ath(4) radiotap vendor extension.
This includes a few new fields in each RXed frame:

* per chain RX RSSI (ctl and ext);
* current RX chainmask;
* EVM information;
* PHY error code;
* basic RX status bits (CRC error, PHY error, etc).

This is primarily to allow me to do some userland PHY error processing
for radar and spectral scan data.  However since EVM and per-chain RSSI
is provided, others may find it useful for a variety of tasks.

The default is to not compile in the radiotap vendor extensions, primarily
because tcpdump doesn't seem to handle the particular vendor extension
layout I'm using, and I'd rather not break existing code out there that
may be (badly) parsing the radiotap data.

Instead, add the option 'ATH_ENABLE_RADIOTAP_VENDOR_EXT' to your kernel
configuration file to enable these options.
2012-06-24 07:01:49 +00:00
adrian
7dbe608f0c On second thought, let's just set both CRC and PHY errors together on
frames that have it and let the upper layer sort it out.

PR:		kern/169362
2012-06-24 06:37:28 +00:00
adrian
926549a58e Sometimes the AR5416 sends back radar PHY errors with both the PHY error
and the CRC error bits set.  The radar payload is correct.

When this happens, the stack doesn't see them PHY error frames and
isn't interpreted as a PHY error.  So, no radar detection and no radiotap
PHY error handling.

Now, this may introduce some weird issues if the MAC sends up some other
combination of CRC error + PHY error frames; this commit would break that
and mark them as PHY errors instead of CRC errors.

I may tinker with this a little more to pass radar/early radar/spectral
frames up as PHY errors if the CRC bit is set, to restore the previous
behaviour (where if CRC is set on a PHY error frame, it's marked as a CRC
error rather than PHY error.)

Tested on:	AR5416, over the air, to a USRP N200 which is generating a
		large number of a variety of radar pulses.
TODO:		Test on AR9130, AR9160, AR9280 (and maybe radar pulses on
		2GHz on AR9285/AR9287.)

PR:		kern/169362
2012-06-24 05:59:32 +00:00
adrian
841450cb6e AR9287 tidyups:
* Add an OS_A_REG_WRITE() routine - analog writes require a 100usec delay
  on AR9280 and later, so create a method to do it.

* Use it for the AR9287 analog writes.

* Re-indent and style(9) the code.
2012-06-17 05:56:27 +00:00
adrian
79176a3c74 Add an disabled workaround for the AR9285SE.
This just requires a little HAL change (add a new config parameter) and
some glue in if_ath_pci.c, however I'm leaving this up for someone else
to do.

Obtained from:	Qualcomm Atheros
2012-06-17 05:34:41 +00:00
adrian
46e1bb44ef Bring over the AR9285 specific PCIe suspend/resume/ASPM workarounds.
Obtained from:	Qualcomm Atheros, Linux ath9k
2012-06-17 04:48:47 +00:00
adrian
656256d25b After some discussion with bschmidt@, it's likely better to just go
through ieee80211_suspend_all() and ieee80211_resume_all().
All the other wireless drivers are doing that particular dance.

PR:		kern/169084
2012-06-17 03:08:33 +00:00
adrian
f4c9781794 .. and this wasn't supposed to be in the previous commit either. 2012-06-16 22:28:36 +00:00
adrian
e781c0c0fc oops, remove this, it wasn't supposed to be committed. 2012-06-16 22:26:45 +00:00
adrian
3762f77b7e A few nitpicks:
* Use ATH_RC_NUM instead of '4' when iterating over the ratecontrol series
  array.

* A few style(9) fixes, hopefully no regressions here.

* Add some comments that better describe what's going on.
2012-06-16 21:37:15 +00:00
kib
df96c54547 Fix build. 2012-06-16 20:49:08 +00:00
adrian
1e66a452fb Shuffle some more fields in ath_buf so it's not too big.
This shaves off 20 bytes - from 288 bytes to 268 bytes.

However, it's still too big.
2012-06-16 04:41:35 +00:00
adrian
971f393620 Shave four (or eight) bytes off of ath_buf - this field isn't used. 2012-06-16 04:36:08 +00:00
adrian
610e0d131b Convert ath(4) to just use ieee80211_suspend_all() and ieee80211_resume_all().
The existing code tries to use the beacon miss timer to signal that the AP
has gone away.  Unfortunately this doesn't seem to be behaving itself.
I'll try to investigate why this is for the sake of completeness.

The result is the STA will stay "associated" to the AP it was associated
with when it suspended.  It never receives a bmiss notification so it
never tries reassociating.

PR:		kern/169084
2012-06-15 01:15:59 +00:00
adrian
a65a9620af Shrink ath_buf a little more:
* Resize some types.  In particular, bfs_seqno can be uint16_t for now.
  Previous work would assign the unassigned seqno a value of -1, which
  I obviously can't do here.

* Remove bfs_pktdur.  It was in the original code but nothing so far uses
  it.

This gets ath_buf down (on my i386 system) to 292 bytes from 300 bytes.
I'd rather it be much, much smaller.
2012-06-14 04:24:13 +00:00
adrian
27ea453afe Disable BGSCAN for 802.11n for now. Until scanning during traffic is
fixed for 802.11n TX, this needs to be disabled or users wlil see randomly
hanging aggregation sessions.

Whilst I'm here, remove the warning about 802.11n being full of dragons.
It's nowhere near that scary now.
2012-06-14 04:14:06 +00:00
adrian
f85277a163 Disable this warning debug for now, as I'm now aware of the particular
situation where it's occuring.

Whilst I'm here, flesh out a more descriptive description.
2012-06-14 04:01:25 +00:00
adrian
a65b3dd589 Implement a global (all non-mgmt traffic) TX ath_buf limitation when
ath_start() is called.

This (defaults to 10 frames) gives for a little headway in the TX ath_buf
allocation, so buffer cloning is still possible.

This requires a lot omre experimenting and tuning.

It also doesn't stop a node/TID from consuming all of the available
ath_buf's, especially when the node is going through high packet loss
or only talking at a low TX rate.  It also doesn't stop a paused TID
from taking all of the ath_bufs.  I'll look at fixing that up in subsequent
commits.

PR:	kern/168170
2012-06-14 00:51:53 +00:00