packets which go through each USB host controllers. Its implementations
are almost based on BPF code and very similar with it except it's
little bit customized for USB packet only. The userland program
usbdump(8) would be committed soon.
Discussed with: hps, thompsa, yongari
Move logic of building ACPI headers for acpi_wakeup.c into better places,
remove intermediate makefile and shell script, and reduce diff between i386
and amd64.
Control Algorithms for FreeBSD" FreeBSD Foundation funded project. More details
about the project are available at: http://caia.swin.edu.au/freebsd/5cc/
- Add a KPI and supporting infrastructure to allow modular congestion control
algorithms to be used in the net stack. Algorithms can maintain per-connection
state if required, and connections maintain their own algorithm pointer, which
allows different connections to concurrently use different algorithms. The
TCP_CONGESTION socket option can be used with getsockopt()/setsockopt() to
programmatically query or change the congestion control algorithm respectively
from within an application at runtime.
- Integrate the framework with the TCP stack in as least intrusive a manner as
possible. Care was also taken to develop the framework in a way that should
allow integration with other congestion aware transport protocols (e.g. SCTP)
in the future. The hope is that we will one day be able to share a single set
of congestion control algorithm modules between all congestion aware transport
protocols.
- Introduce a new congestion recovery (TF_CONGRECOVERY) state into the TCP stack
and use it to decouple the meaning of recovery from a congestion event and
recovery from packet loss (TF_FASTRECOVERY) a la RFC2581. ECN and delay based
congestion control protocols don't generally need to recover from packet loss
and need a different way to note a congestion recovery episode within the
stack.
- Remove the net.inet.tcp.newreno sysctl, which simplifies some portions of code
and ensures the stack always uses the appropriate mechanisms for recovering
from packet loss during a congestion recovery episode.
- Extract the NewReno congestion control algorithm from the TCP stack and
massage it into module form. NewReno is always built into the kernel and will
remain the default algorithm for the forseeable future. Implementations of
additional different algorithms will become available in the near future.
- Bump __FreeBSD_version to 900025 and note in UPDATING that rebuilding code
that relies on the size of "struct tcpcb" is required.
Many thanks go to the Cisco University Research Program Fund at Community
Foundation Silicon Valley and the FreeBSD Foundation. Their support of our work
at the Centre for Advanced Internet Architectures, Swinburne University of
Technology is greatly appreciated.
In collaboration with: David Hayes <dahayes at swin edu au> and
Grenville Armitage <garmitage at swin edu au>
Sponsored by: Cisco URP, FreeBSD Foundation
Reviewed by: rpaulo
Tested by: David Hayes (and many others over the years)
MFC after: 3 months
mappings need to end up in the kernel anyway since the kernel begins
executing in OF context. Separating them adds needless complexity,
especially since the powerpc64 and mmu_oea64 code gave up on it a long
time ago.
As a side effect, the PPC ofw_machdep code is no longer AIM-specific,
so move it to powerpc/ofw.
TARGET_BIG_ENDIAN is now completely dead, except where it was
originally supposed to be used (internally in the toolchain building).
TARGET_ARCH has changed in three cases:
(1) Little endian mips has changed to mipsel.
(2) Big endian mips has changed to mipseb.
(3) Big endian arm has changed to armeb.
Some additional changes are needed to make 'make universe' work on arm
and mips after this change, so those are commented out for now.
UPDATING information will be forthcoming. Any remaining rough edges
will be hammered out in -current.
to amd64, i386, and pc98. The headers are installed to /usr/include/x86
during an installworld, and an 'x86' symlink is created for kernel builds
similar to 'machine' so that the headers can be included as <x86/foo.h>.
Reviewed by: imp
enhancements (1). Switch to a standard 2-clause BSD license for this (2).
Unfortunately we have to un-static the ifindex_table for this but do not
publicly export it.
Suggested by: rwatson (1) a while back.
Approved by: thompsa (2) for the change from r204279.
MFC after: 6 days
o Add support for backend devices (e.g. blkback)
o Implement extensions to the Xen para-virtualized block API to allow
for larger and more outstanding I/Os.
o Import a completely rewritten block back driver with support for fronting
I/O to both raw devices and files.
o General cleanup and documentation of the XenBus and XenStore support code.
o Robustness and performance updates for the block front driver.
o Fixes to the netfront driver.
Sponsored by: Spectra Logic Corporation
sys/xen/xenbus/init.txt:
Deleted: This file explains the Linux method for XenBus device
enumeration and thus does not apply to FreeBSD's NewBus approach.
sys/xen/xenbus/xenbus_probe_backend.c:
Deleted: Linux version of backend XenBus service routines. It
was never ported to FreeBSD. See xenbusb.c, xenbusb_if.m,
xenbusb_front.c xenbusb_back.c for details of FreeBSD's XenBus
support.
sys/xen/xenbus/xenbusvar.h:
sys/xen/xenbus/xenbus_xs.c:
sys/xen/xenbus/xenbus_comms.c:
sys/xen/xenbus/xenbus_comms.h:
sys/xen/xenstore/xenstorevar.h:
sys/xen/xenstore/xenstore.c:
Split XenStore into its own tree. XenBus is a software layer built
on top of XenStore. The old arrangement and the naming of some
structures and functions blurred these lines making it difficult to
discern what services are provided by which layer and at what times
these services are available (e.g. during system startup and shutdown).
sys/xen/xenbus/xenbus_client.c:
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbus_probe.c:
sys/xen/xenbus/xenbusb.c:
sys/xen/xenbus/xenbusb.h:
Split up XenBus code into methods available for use by client
drivers (xenbus.c) and code used by the XenBus "bus code" to
enumerate, attach, detach, and service bus drivers.
sys/xen/reboot.c:
sys/dev/xen/control/control.c:
Add a XenBus front driver for handling shutdown, reboot, suspend, and
resume events published in the XenStore. Move all PV suspend/reboot
support from reboot.c into this driver.
sys/xen/blkif.h:
New file from Xen vendor with macros and structures used by
a block back driver to service requests from a VM running a
different ABI (e.g. amd64 back with i386 front).
sys/conf/files:
Adjust kernel build spec for new XenBus/XenStore layout and added
Xen functionality.
sys/dev/xen/balloon/balloon.c:
sys/dev/xen/netfront/netfront.c:
sys/dev/xen/blkfront/blkfront.c:
sys/xen/xenbus/...
sys/xen/xenstore/...
o Rename XenStore APIs and structures from xenbus_* to xs_*.
o Adjust to use of M_XENBUS and M_XENSTORE malloc types for allocation
of objects returned by these APIs.
o Adjust for changes in the bus interface for Xen drivers.
sys/xen/xenbus/...
sys/xen/xenstore/...
Add Doxygen comments for these interfaces and the code that
implements them.
sys/dev/xen/blkback/blkback.c:
o Rewrite the Block Back driver to attach properly via newbus,
operate correctly in both PV and HVM mode regardless of domain
(e.g. can be in a DOM other than 0), and to deal with the latest
metadata available in XenStore for block devices.
o Allow users to specify a file as a backend to blkback, in addition
to character devices. Use the namei lookup of the backend path
to automatically configure, based on file type, the appropriate
backend method.
The current implementation is limited to a single outstanding I/O
at a time to file backed storage.
sys/dev/xen/blkback/blkback.c:
sys/xen/interface/io/blkif.h:
sys/xen/blkif.h:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
Extend the Xen blkif API: Negotiable request size and number of
requests.
This change extends the information recorded in the XenStore
allowing block front/back devices to negotiate for optimal I/O
parameters. This has been achieved without sacrificing backward
compatibility with drivers that are unaware of these protocol
enhancements. The extensions center around the connection protocol
which now includes these additions:
o The back-end device publishes its maximum supported values for,
request I/O size, the number of page segments that can be
associated with a request, the maximum number of requests that
can be concurrently active, and the maximum number of pages that
can be in the shared request ring. These values are published
before the back-end enters the XenbusStateInitWait state.
o The front-end waits for the back-end to enter either the InitWait
or Initialize state. At this point, the front end limits it's
own capabilities to the lesser of the values it finds published
by the backend, it's own maximums, or, should any back-end data
be missing in the store, the values supported by the original
protocol. It then initializes it's internal data structures
including allocation of the shared ring, publishes its maximum
capabilities to the XenStore and transitions to the Initialized
state.
o The back-end waits for the front-end to enter the Initalized
state. At this point, the back end limits it's own capabilities
to the lesser of the values it finds published by the frontend,
it's own maximums, or, should any front-end data be missing in
the store, the values supported by the original protocol. It
then initializes it's internal data structures, attaches to the
shared ring and transitions to the Connected state.
o The front-end waits for the back-end to enter the Connnected
state, transitions itself to the connected state, and can
commence I/O.
Although an updated front-end driver must be aware of the back-end's
InitWait state, the back-end has been coded such that it can
tolerate a front-end that skips this step and transitions directly
to the Initialized state without waiting for the back-end.
sys/xen/interface/io/blkif.h:
o Increase BLKIF_MAX_SEGMENTS_PER_REQUEST to 255. This is
the maximum number possible without changing the blkif
request header structure (nr_segs is a uint8_t).
o Add two new constants:
BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK, and
BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK. These respectively
indicate the number of segments that can fit in the first
ring-buffer entry of a request, and for each subsequent
(sg element only) ring-buffer entry associated with the
"header" ring-buffer entry of the request.
o Add the blkif_request_segment_t typedef for segment
elements.
o Add the BLKRING_GET_SG_REQUEST() macro which wraps the
RING_GET_REQUEST() macro and returns a properly cast
pointer to an array of blkif_request_segment_ts.
o Add the BLKIF_SEGS_TO_BLOCKS() macro which calculates the
number of ring entries that will be consumed by a blkif
request with the given number of segments.
sys/xen/blkif.h:
o Update for changes in interface/io/blkif.h macros.
o Update the BLKIF_MAX_RING_REQUESTS() macro to take the
ring size as an argument to allow this calculation on
multi-page rings.
o Add a companion macro to BLKIF_MAX_RING_REQUESTS(),
BLKIF_RING_PAGES(). This macro determines the number of
ring pages required in order to support a ring with the
supplied number of request blocks.
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
o Negotiate with the other-end with the following limits:
Reqeust Size: MAXPHYS
Max Segments: (MAXPHYS/PAGE_SIZE) + 1
Max Requests: 256
Max Ring Pages: Sufficient to support Max Requests with
Max Segments.
o Dynamically allocate request pools and segemnts-per-request.
o Update ring allocation/attachment code to support a
multi-page shared ring.
o Update routines that access the shared ring to handle
multi-block requests.
sys/dev/xen/blkfront/blkfront.c:
o Track blkfront allocations in a blkfront driver specific
malloc pool.
o Strip out XenStore transaction retry logic in the
connection code. Transactions only need to be used when
the update to multiple XenStore nodes must be atomic.
That is not the case here.
o Fully disable blkif_resume() until it can be fixed
properly (it didn't work before this change).
o Destroy bus-dma objects during device instance tear-down.
o Properly handle backend devices with powef-of-2 sector
sizes larger than 512b.
sys/dev/xen/blkback/blkback.c:
Advertise support for and implement the BLKIF_OP_WRITE_BARRIER
and BLKIF_OP_FLUSH_DISKCACHE blkif opcodes using BIO_FLUSH and
the BIO_ORDERED attribute of bios.
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
Fix various bugs in blkfront.
o gnttab_alloc_grant_references() returns 0 for success and
non-zero for failure. The check for < 0 is a leftover
Linuxism.
o When we negotiate with blkback and have to reduce some of our
capabilities, print out the original and reduced capability before
changing the local capability. So the user now gets the correct
information.
o Fix blkif_restart_queue_callback() formatting. Make sure we hold
the mutex in that function before calling xb_startio().
o Fix a couple of KASSERT()s.
o Fix a check in the xb_remove_* macro to be a little more specific.
sys/xen/gnttab.h:
sys/xen/gnttab.c:
Define GNTTAB_LIST_END publicly as GRANT_REF_INVALID.
sys/dev/xen/netfront/netfront.c:
Use GRANT_REF_INVALID instead of driver private definitions of the
same constant.
sys/xen/gnttab.h:
sys/xen/gnttab.c:
Add the gnttab_end_foreign_access_references() API.
This API allows a client to batch the release of an array of grant
references, instead of coding a private for loop. The implementation
takes advantage of this batching to reduce lock overhead to one
acquisition and release per-batch instead of per-freed grant reference.
While here, reduce the duration the gnttab_list_lock is held during
gnttab_free_grant_references() operations. The search to find the
tail of the incoming free list does not rely on global state and so
can be performed without holding the lock.
sys/dev/xen/xenpci/evtchn.c:
sys/dev/xen/evtchn/evtchn.c:
sys/xen/xen_intr.h:
o Implement the bind_interdomain_evtchn_to_irqhandler API for HVM mode.
This allows an HVM domain to serve back end devices to other domains.
This API is already implemented for PV mode.
o Synchronize the API between HVM and PV.
sys/dev/xen/xenpci/xenpci.c:
o Scan the full region of CPUID space in which the Xen VMM interface
may be implemented. On systems using SuSE as a Dom0 where the
Viridian API is also exported, the VMM interface is above the region
we used to search.
o Pass through bus_alloc_resource() calls so that XenBus drivers
attaching on an HVM system can allocate unused physical address
space from the nexus. The block back driver makes use of this
facility.
sys/i386/xen/xen_machdep.c:
Use the correct type for accessing the statically mapped xenstore
metadata.
sys/xen/interface/hvm/params.h:
sys/xen/xenstore/xenstore.c:
Move hvm_get_parameter() to the correct global header file instead
of as a private method to the XenStore.
sys/xen/interface/io/protocols.h:
Sync with vendor.
sys/xeninterface/io/ring.h:
Add macro for calculating the number of ring pages needed for an N
deep ring.
To avoid duplication within the macros, create and use the new
__RING_HEADER_SIZE() macro. This macro calculates the size of the
ring book keeping struct (producer/consumer indexes, etc.) that
resides at the head of the ring.
Add the __RING_PAGES() macro which calculates the number of shared
ring pages required to support a ring with the given number of
requests.
These APIs are used to support the multi-page ring version of the
Xen block API.
sys/xeninterface/io/xenbus.h:
Add Comments.
sys/xen/xenbus/...
o Refactor the FreeBSD XenBus support code to allow for both front and
backend device attachments.
o Make use of new config_intr_hook capabilities to allow front and back
devices to be probed/attached in parallel.
o Fix bugs in probe/attach state machine that could cause the system to
hang when confronted with a failure either in the local domain or in
a remote domain to which one of our driver instances is attaching.
o Publish all required state to the XenStore on device detach and
failure. The majority of the missing functionality was for serving
as a back end since the typical "hot-plug" scripts in Dom0 don't
handle the case of cleaning up for a "service domain" that is not
itself.
o Add dynamic sysctl nodes exposing the generic ivars of
XenBus devices.
o Add doxygen style comments to the majority of the code.
o Cleanup types, formatting, etc.
sys/xen/xenbus/xenbusb.c:
Common code used by both front and back XenBus busses.
sys/xen/xenbus/xenbusb_if.m:
Method definitions for a XenBus bus.
sys/xen/xenbus/xenbusb_front.c:
sys/xen/xenbus/xenbusb_back.c:
XenBus bus specialization for front and back devices.
MFC after: 1 month
This can happen if the algos are built as modules but are not loaded. If
the selected ratectl algo is not available, try to load it (The load
module functions does nothing currently). Add a dummy ratectl algo which
always selects the first available rate. Use that one if the desired algo
is not available.
MFC after: 1 week
PowerMac7,2.
- The fcu driver lets us read and write the fan RPMs for all fans in the
PowerMac7,2. This driver is PowerMac specific.
- The ds1775 is a driver to read the temperature for the drive bay sensor.
- The max6690 is another driver to read temperatures. Here it is used to
read the inlet, the backside and the U3 heatsink temperature.
An additional driver, the ad7417, will follow later.
Thanks to nwhitehorn for guiding me through this driver development.
Approved by: nwhitehorn (mentor)
dev.bce.<unit>.nvram_dump
Add the capability to write the complete contents of the NVRAM via sysctl
dev.bce.<unit>.nvram_write
These are only available if the kernel option BCE_DEBUG is enabled.
The nvram_write sysctl also requires the kernel option
BCE_NVRAM_WRITE_SUPPORT to be enabled. These are to be used at your
own caution. Since the MAC addresses are stored in the NVRAM, if you
dump one NIC and restore it on another NIC the destination NIC's
MAC addresses will not be preserved. A tool can be made using these
sysctl's to manage the on-chip firmware.
Reviewed by: davidch, yongari
Unlike actual MTRR, this only controls the mapping attributes for
subsequent mmap() of /dev/mem. Nonetheless, the support is sufficiently
MTRR-like that Xorg can use it, which translates into an enormous increase
in graphics performance on PowerPC.
MFC after: 2 weeks
it (the root mount code) into a new file called vfs_mountroot.c
The split is almost trivial, as the code is almost perfectly
non-intertwined. The only adjustment needed was to move the UMA
zone allocation out of vfs_mountroot() [in vfs_mountroot.c] and
into vfs_mount.c, where it had to be done as a SYSINIT [see
vfs_mount_init()].
There are no functional changes with this commit.
- GPIO bus controller interface
- GPIO bus interface
- Implementation of GPIO led(4) compatible device
- Implementation of iic(4) bus over GPIO (author: Luiz Otavio O Souza)
Tested by: Luiz Otavio O Souza, Alexandr Rybalko
links. The reference counting is needed to be able to determine if a
specific devfs path exists. For true device file paths we can traverse
the cdevp_list but a separate directory list is needed for user created
symbolic links.
Add a new directory entry flag DE_USER to mark entries which should
unreference their parent directory on deletion.
A new function to traverse cdevp_list and the directory list will be
introduced in a separate commit.
Idea from: kib
Reviewed by: kib
in the kernel (just as inet_ntoa() and inet_aton()) are and sync their
prototype accordingly with already mentioned functions.
Sponsored by: Sandvine Incorporated
Reviewed by: emaste, rstone
Approved by: dfr
MFC after: 2 weeks
or some variation in the path, the new version assumes that $0 is
newvers.sh path, and that dirname $0/.. is the same as $S aka $SYSDIR.
It also removes knowledge of ${MACHINE} and ${MACHINE_ARCH}, which is
also good.
# I've had this in my tree for about 6 months now, which is why I
# didn't notice that I broke it in r209510 and that was fixed in
# r212954. This should finally resolve the issues people had with
# r204824 as well as address the issues that motivated r204824.
Now when one does 'make kernel ; make kernel' the second invocation
only does: `kernel.ko' is up to date.
rather than reproduce all the .fw files and relink the kernel.
Bring in a driver for the LSI Logic MPT2 6Gb SAS controllers.
This driver supports basic I/O, and works with SAS and SATA drives and
expanders.
Basic error recovery works (i.e. timeouts and aborts) as well.
Integrated RAID isn't supported yet, and there are some known bugs.
So this isn't ready for production use, but is certainly ready for
testing and additional development. For the moment, new commits to this
driver should go into the FreeBSD Perforce repository first
(//depot/projects/mps/...) and then get merged into -current once
they've been vetted.
This has only been added to the amd64 GENERIC, since that is the only
architecture I have tested this driver with.
Submitted by: scottl
Discussed with: imp, gibbs, will
Sponsored by: Yahoo, Spectra Logic Corporation
the existing code was very platform specific, and broken for SMP systems
trying to reboot from KDB.
- Add a new PLATFORM_RESET() method to the platform KOBJ interface, and
migrate existing reset functions into platform modules.
- Modify the OF_reboot() routine to submit the request by hand to avoid
the IPIs involved in the regular openfirmware() routine. This fixes
reboot from KDB on SMP machines.
- Move non-KDB reset and poweroff functions on the Powermac platform
into the relevant power control drivers (cuda, pmu, smu), instead of
using them through the Open Firmware backdoor.
- Rename platform_chrp to platform_powermac since it has become
increasingly Powermac specific. When we gain support for IBM systems,
we will grow a new platform_chrp.
provide PCI devices for various hardware such as memory controllers, etc.
These PCI buses are not enumerated via ACPI however. Add qpi(4) psuedo
bus and Host-PCI bridge drivers to enumerate these buses. Currently the
driver uses the CPU ID to determine the bridges' presence.
In collaboration with: Joseph Golio @ Isilon Systems
MFC after: 2 weeks