This adds and enables the PV console used on XEN kernels to
GENERIC/XENHVM kernels in order for it to be used on PVH.
Approved by: gibbs
Sponsored by: Citrix Systems R&D
dev/xen/console/console.c:
- Define console_page.
- Move xc_printf debug function from i386 XEN code to generic console
code.
- Rework xc_printf.
- Use xen_initial_domain instead of open-coded checks for Dom0.
- Gate the attach of the PV console to PV(H) guests.
dev/xen/console/xencons_ring.c:
- Allow the PV Xen console to output earlier by directly signaling
the event channel in start_info if the event channel is not yet
initialized.
- Use HYPERVISOR_start_info instead of xen_start_info.
i386/include/xen/xen-os.h:
- Remove prototype for xc_printf since it's now declared in global
xen-os.h
i386/xen/xen_machdep.c:
- Remove previous version of xc_printf.
- Remove definition of console_page (now it's defined in the console
itself).
- Fix some printf formatting errors.
x86/xen/pv.c:
- Add some early boot debug messages using xc_printf.
- Set console_page based on the value passed in start_info.
xen/xen-os.h:
- Declare console_page and add prototype for xc_printf.
Move asm IPIs handlers to C code, so both Xen and native IPI handlers
share the same code.
Reviewed by: jhb
Approved by: gibbs
Sponsored by: Citrix Systems R&D
amd64/amd64/apic_vector.S:
i386/i386/apic_vector.s:
- Remove asm coded IPI handlers and instead call the newly introduced
C variants.
amd64/amd64/mp_machdep.c:
i386/i386/mp_machdep.c:
- Add C coded clones to the asm IPI handlers (moved from
x86/xen/hvm.c).
i386/include/smp.h:
amd64/include/smp.h:
- Add prototypes for the C IPI handlers.
x86/xen/hvm.c:
- Move the C IPI handlers to mp_machdep and call those in the Xen IPI
handlers.
i386/xen/mp_machdep.c:
- Add dummy IPI handlers to the i386 Xen PV port (this port doesn't
support SMP).
I/O windows, the default is to preserve the firmware-assigned resources.
PCI bus numbers are only managed if NEW_PCIB is enabled and the architecture
defines a PCI_RES_BUS resource type.
- Add a helper API to create top-level PCI bus resource managers for each
PCI domain/segment. Host-PCI bridge drivers use this API to allocate
bus numbers from their associated domain.
- Change the PCI bus and CardBus drivers to allocate a bus resource for
their bus number from the parent PCI bridge device.
- Change the PCI-PCI and PCI-CardBus bridge drivers to allocate the
full range of bus numbers from secbus to subbus from their parent bridge.
The drivers also always program their primary bus register. The bridge
drivers also support growing their bus range by extending the bus resource
and updating subbus to match the larger range.
- Add support for managing PCI bus resources to the Host-PCI bridge drivers
used for amd64 and i386 (acpi_pcib, mptable_pcib, legacy_pcib, and qpi_pcib).
- Define a PCI_RES_BUS resource type for amd64 and i386.
Reviewed by: imp
MFC after: 1 month
reuse the first page of the crashdumpmap as CMAP1/CADDR1. For i386,
remove CMAP1/CADDR1 entirely and reuse CMAP3/CADDR3 for the memory test.
Reviewed by: alc, peter
MFC after: 2 weeks
Debuggers may need to change PSL_RF. Note that tf_eflags is already stored
in the signal context during signal handling and PSL_RF previously could be
modified via sigreturn, so this change should not provide any new ability
to userspace.
For background see the thread at:
http://lists.freebsd.org/pipermail/freebsd-i386/2007-September/005910.html
Reviewed by: jhb, kib
Sponsored by: DARPA, AFRL
words, every architecture is now auto-sizing the kmem arena. This revision
changes kmeminit() so that the definition of VM_KMEM_SIZE_SCALE becomes
mandatory and the definition of VM_KMEM_SIZE becomes optional.
Replace or eliminate all existing definitions of VM_KMEM_SIZE. With
auto-sizing enabled, VM_KMEM_SIZE effectively became an alternate spelling
for VM_KMEM_SIZE_MIN on most architectures. Use VM_KMEM_SIZE_MIN for
clarity.
Change kmeminit() so that the effect of defining VM_KMEM_SIZE is similar to
that of setting the tunable vm.kmem_size. Whereas the macros
VM_KMEM_SIZE_{MAX,MIN,SCALE} have had the same effect as the tunables
vm.kmem_size_{max,min,scale}, the effects of VM_KMEM_SIZE and vm.kmem_size
have been distinct. In particular, whereas VM_KMEM_SIZE was overridden by
VM_KMEM_SIZE_{MAX,MIN,SCALE} and vm.kmem_size_{max,min,scale}, vm.kmem_size
was not. Remedy this inconsistency. Now, VM_KMEM_SIZE can be used to set
the size of the kmem arena at compile-time without that value being
overridden by auto-sizing.
Update the nearby comments to reflect the kmem submap being replaced by the
kmem arena. Stop duplicating the auto-sizing formula in every machine-
dependent vmparam.h and place it in kmeminit() where auto-sizing takes
place.
Reviewed by: kib (an earlier version)
Sponsored by: EMC / Isilon Storage Division
field. Perform vcpu enumeration for Xen PV and HVM environments
and convert all Xen drivers to use vcpu_id instead of a hard coded
assumption of the mapping algorithm (acpi or apic ID) in use.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Reviewed by: gibbs
Approved by: re (blanket Xen)
amd64/include/pcpu.h:
i386/include/pcpu.h:
Add vcpu_id to the amd64 and i386 pcpu structures.
dev/xen/timer/timer.c
x86/xen/xen_intr.c
Use new vcpu_id instead of assuming acpi_id == vcpu_id.
i386/xen/mp_machdep.c:
i386/xen/mptable.c
x86/xen/hvm.c:
Perform Xen HVM and Xen full PV vcpu_id mapping.
x86/xen/hvm.c:
x86/acpica/madt.c
Change SYSINIT ordering of acpi CPU enumeration so that it
is guaranteed to be available at the time of Xen HVM vcpu
id mapping.
amd64 and i386.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Reviewed by: gibbs
Approved by: re (blanket Xen)
MFC after: 2 weeks
sys/amd64/amd64/mp_machdep.c:
sys/amd64/include/cpu.h:
sys/i386/i386/mp_machdep.c:
sys/i386/include/cpu.h:
- Introduce two new CPU hooks for initialization and resume
purposes. This allows us to get rid of the XENHVM ifdefs in
mp_machdep, and also sets some hooks into common code that can be
used by other hypervisor implementations.
sys/amd64/conf/XENHVM:
sys/i386/conf/XENHVM:
- Remove these configs now that GENERIC has builtin support for Xen
HVM.
sys/kern/subr_smp.c:
- Make sure there are no pending IPIs when suspending a system.
sys/x86/xen/hvm.c:
- Add cpu init and resume vectors that are called from mp_machdep
using the new hooks.
- Only clear the vcpu_info mapping data on resume. It is already
clear for the BSP on a cold boot and is set correctly as APs
are started.
- Gate xen_hvm_init_cpu only to systems running under Xen.
sys/x86/xen/xen_intr.c:
- Gate the setup of event channels only to systems running under Xen.
Xen PVHVM guest.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Reviewed by: gibbs
Approved by: re (blanket Xen)
MFC after: 2 weeks
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
- Make sure that are no MMU related IPIs pending on migration.
- Reset pending IPI_BITMAP on resume.
- Init vcpu_info on resume.
sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
sys/x86/acpica/acpi_wakeup.c:
sys/x86/x86/intr_machdep.c:
sys/x86/isa/atpic.c:
sys/x86/x86/io_apic.c:
sys/x86/x86/local_apic.c:
- Add a "suspend_cancelled" parameter to pic_resume(). For the
Xen PIC, restoration of interrupt services differs between
the aborted suspend and normal resume cases, so we must provide
this information.
sys/dev/acpica/acpi_timer.c:
sys/dev/xen/timer/timer.c:
sys/timetc.h:
- Don't swap out "suspend safe" timers across a suspend/resume
cycle. This includes the Xen PV and ACPI timers.
sys/dev/xen/control/control.c:
- Perform proper suspend/resume process for PVHVM:
- Suspend all APs before going into suspension, this allows us
to reset the vcpu_info on resume for each AP.
- Reset shared info page and callback on resume.
sys/dev/xen/timer/timer.c:
- Implement suspend/resume support for the PV timer. Since FreeBSD
doesn't perform a per-cpu resume of the timer, we need to call
smp_rendezvous in order to correctly resume the timer on each CPU.
sys/dev/xen/xenpci/xenpci.c:
- Don't reset the PCI interrupt on each suspend/resume.
sys/kern/subr_smp.c:
- When suspending a PVHVM domain make sure there are no MMU IPIs
in-flight, or we will get a lockup on resume due to the fact that
pending event channels are not carried over on migration.
- Implement a generic version of restart_cpus that can be used by
suspended and stopped cpus.
sys/x86/xen/hvm.c:
- Implement resume support for the hypercall page and shared info.
- Clear vcpu_info so it can be reset by APs when resuming from
suspension.
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/x86/xen/xen_intr.c:
- Support UP kernel configurations.
sys/x86/xen/xen_intr.c:
- Properly rebind per-cpus VIRQs and IPIs on resume.
IPI implmementations.
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
Submitted by: gibbs (misc cleanup, table driven config)
Reviewed by: gibbs
MFC after: 2 weeks
sys/amd64/include/cpufunc.h:
sys/amd64/amd64/pmap.c:
Move invltlb_globpcid() into cpufunc.h so that it can be
used by the Xen HVM version of tlb shootdown IPI handlers.
sys/x86/xen/xen_intr.c:
sys/xen/xen_intr.h:
Rename xen_intr_bind_ipi() to xen_intr_alloc_and_bind_ipi(),
and remove the ipi vector parameter. This api allocates
an event channel port that can be used for ipi services,
but knows nothing of the actual ipi for which that port
will be used. Removing the unused argument and cleaning
up the comments surrounding its declaration helps clarify
its actual role.
sys/amd64/amd64/mp_machdep.c:
sys/amd64/include/cpu.h:
sys/i386/i386/mp_machdep.c:
sys/i386/include/cpu.h:
Implement a generic framework for amd64 and i386 that allows
the implementation of certain CPU management functions to
be selected at runtime. Currently this is only used for
the ipi send function, which we optimize for Xen when running
on a Xen hypervisor, but can easily be expanded to support
more operations.
sys/x86/xen/hvm.c:
Implement Xen PV IPI handlers and operations, replacing native
send IPI.
sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
sys/i386/include/smp.h:
Remove NR_VIRQS and NR_IPIS from FreeBSD headers. NR_VIRQS
is defined already for us in the xen interface files.
NR_IPIS is only needed in one file per Xen platform and is
easily inferred by the IPI vector table that is defined in
those files.
sys/i386/xen/mp_machdep.c:
Restructure to more closely match the HVM implementation by
performing table driven IPI setup.
Use this new driver for both PV and HVM instances.
This driver requires a Xen hypervisor that supports vector callbacks,
VCPUOP hypercalls, and reports that it has a "safe PV clock".
New timer driver:
Submitted by: will
Sponsored by: Spectra Logic Corporation
PV port to new driver, and bug fixes:
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
sys/dev/xen/timer/timer.c:
- Register a PV timer device driver which (currently)
implements device_{identify,probe,attach} and stubs
device_detach. The detach routine requires functionality
not provided by timecounters(4). The suspend and resume
routines need additional work (due to Xen requiring that
the hypercalls be executed on the target VCPU), and aren't
needed for our purposes.
- Make sure there can only be one device instance of this
driver, and that it only registers one eventtimers(4) and
one timecounters(4) device interface. Make both interfaces
use PCPU data as needed.
- Match, with a few style cleanups & API differences, the
Xen versions of the "fetch time" functions.
- Document the magic scale_delta() better for the i386 version.
- When registering the event timer, bind a separate event
channel for the timer VIRQ to the device's event timer
interrupt handler for each active VCPU. Describe each
interrupt as "xen_et:c%d", so they can be identified per
CPU in "vmstat -i" or "show intrcnt" in KDB.
- When scheduling a timer into the hypervisor, try up to
60 times if the hypervisor rejects the time as being in
the past. In the common case, this retry shouldn't happen,
and if it does, it should only happen once. This is
because the event timer advertises a minimum period of
100usec, which is only less than the usual hypercall round
trip time about 1 out of every 100 tries. (Unlike other
similar drivers, this one actually checks whether the
hypervisor accepted the singleshot timer set hypercall.)
- Implement a RTC PV clock based on the hypervisor wallclock.
sys/conf/files:
- Add dev/xen/timer/timer.c if the kernel configuration
includes either the XEN or XENHVM options.
sys/conf/files.i386:
sys/i386/include/xen/xen_clock_util.h:
sys/i386/xen/clock.c:
sys/i386/xen/xen_clock_util.c:
sys/i386/xen/mp_machdep.c:
sys/i386/xen/xen_rtc.c:
- Remove previous PV timer used in i386 XEN PV kernels, the
new timer introduced in this change is used instead (so
we share the same code between PVHVM and PV).
MFC after: 2 weeks
Re-structure Xen HVM support so that:
- Xen is detected and hypercalls can be performed very
early in system startup.
- Xen interrupt services are implemented using FreeBSD's native
interrupt delivery infrastructure.
- the Xen interrupt service implementation is shared between PV
and HVM guests.
- Xen interrupt handlers can optionally use a filter handler
in order to avoid the overhead of dispatch to an interrupt
thread.
- interrupt load can be distributed among all available CPUs.
- the overhead of accessing the emulated local and I/O apics
on HVM is removed for event channel port events.
- a similar optimization can eventually, and fairly easily,
be used to optimize MSI.
Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure,
and misc Xen cleanups:
Sponsored by: Spectra Logic Corporation
Unification of PV & HVM interrupt infrastructure, bug fixes,
and misc Xen cleanups:
Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D
sys/x86/x86/local_apic.c:
sys/amd64/include/apicvar.h:
sys/i386/include/apicvar.h:
sys/amd64/amd64/apic_vector.S:
sys/i386/i386/apic_vector.s:
sys/amd64/amd64/machdep.c:
sys/i386/i386/machdep.c:
sys/i386/xen/exception.s:
sys/x86/include/segments.h:
Reserve IDT vector 0x93 for the Xen event channel upcall
interrupt handler. On Hypervisors that support the direct
vector callback feature, we can request that this vector be
called directly by an injected HVM interrupt event, instead
of a simulated PCI interrupt on the Xen platform PCI device.
This avoids all of the overhead of dealing with the emulated
I/O APIC and local APIC. It also means that the Hypervisor
can inject these events on any CPU, allowing upcalls for
different ports to be handled in parallel.
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
Map Xen per-vcpu area during AP startup.
sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
Increase the FreeBSD IRQ vector table to include space
for event channel interrupt sources.
sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
Remove Xen HVM per-cpu variable data. These fields are now
allocated via the dynamic per-cpu scheme. See xen_intr.c
for details.
sys/amd64/include/xen/hypercall.h:
sys/dev/xen/blkback/blkback.c:
sys/i386/include/xen/xenvar.h:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/xen/gnttab.c:
Prefer FreeBSD primatives to Linux ones in Xen support code.
sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
sys/dev/xen/balloon/balloon.c:
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/console/xencons_ring.c:
sys/dev/xen/control/control.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/dev/xen/xenpci/xenpci.c:
sys/i386/i386/machdep.c:
sys/i386/include/pmap.h:
sys/i386/include/xen/xenfunc.h:
sys/i386/isa/npx.c:
sys/i386/xen/clock.c:
sys/i386/xen/mp_machdep.c:
sys/i386/xen/mptable.c:
sys/i386/xen/xen_clock_util.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/xen_rtc.c:
sys/xen/evtchn/evtchn_dev.c:
sys/xen/features.c:
sys/xen/gnttab.c:
sys/xen/gnttab.h:
sys/xen/hvm.h:
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbus_if.m:
sys/xen/xenbus/xenbusb_front.c:
sys/xen/xenbus/xenbusvar.h:
sys/xen/xenstore/xenstore.c:
sys/xen/xenstore/xenstore_dev.c:
sys/xen/xenstore/xenstorevar.h:
Pull common Xen OS support functions/settings into xen/xen-os.h.
sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
Remove constants, macros, and functions unused in FreeBSD's Xen
support.
sys/xen/xen-os.h:
sys/i386/xen/xen_machdep.c:
sys/x86/xen/hvm.c:
Introduce new functions xen_domain(), xen_pv_domain(), and
xen_hvm_domain(). These are used in favor of #ifdefs so that
FreeBSD can dynamically detect and adapt to the presence of
a hypervisor. The goal is to have an HVM optimized GENERIC,
but more is necessary before this is possible.
sys/amd64/amd64/machdep.c:
sys/dev/xen/xenpci/xenpcivar.h:
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/sys/kernel.h:
Refactor magic ioport, Hypercall table and Hypervisor shared
information page setup, and move it to a dedicated HVM support
module.
HVM mode initialization is now triggered during the
SI_SUB_HYPERVISOR phase of system startup. This currently
occurs just after the kernel VM is fully setup which is
just enough infrastructure to allow the hypercall table
and shared info page to be properly mapped.
sys/xen/hvm.h:
sys/x86/xen/hvm.c:
Add definitions and a method for configuring Hypervisor event
delievery via a direct vector callback.
sys/amd64/include/xen/xen-os.h:
sys/x86/xen/hvm.c:
sys/conf/files:
sys/conf/files.amd64:
sys/conf/files.i386:
Adjust kernel build to reflect the refactoring of early
Xen startup code and Xen interrupt services.
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
sys/dev/xen/control/control.c:
sys/dev/xen/evtchn/evtchn_dev.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/xen/xenstore/xenstore.c:
sys/xen/evtchn/evtchn_dev.c:
sys/dev/xen/console/console.c:
sys/dev/xen/console/xencons_ring.c
Adjust drivers to use new xen_intr_*() API.
sys/dev/xen/blkback/blkback.c:
Since blkback defers all event handling to a taskqueue,
convert this task queue to a "fast" taskqueue, and schedule
it via an interrupt filter. This avoids an unnecessary
ithread context switch.
sys/xen/xenstore/xenstore.c:
The xenstore driver is MPSAFE. Indicate as much when
registering its interrupt handler.
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbusvar.h:
Remove unused event channel APIs.
sys/xen/evtchn.h:
Remove all kernel Xen interrupt service API definitions
from this file. It is now only used for structure and
ioctl definitions related to the event channel userland
device driver.
Update the definitions in this file to match those from
NetBSD. Implementing this interface will be necessary for
Dom0 support.
sys/xen/evtchn/evtchnvar.h:
Add a header file for implemenation internal APIs related
to managing event channels event delivery. This is used
to allow, for example, the event channel userland device
driver to access low-level routines that typical kernel
consumers of event channel services should never access.
sys/xen/interface/event_channel.h:
sys/xen/xen_intr.h:
Standardize on the evtchn_port_t type for referring to
an event channel port id. In order to prevent low-level
event channel APIs from leaking to kernel consumers who
should not have access to this data, the type is defined
twice: Once in the Xen provided event_channel.h, and again
in xen/xen_intr.h. The double declaration is protected by
__XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared
twice within a given compilation unit.
sys/xen/xen_intr.h:
sys/xen/evtchn/evtchn.c:
sys/x86/xen/xen_intr.c:
sys/dev/xen/xenpci/evtchn.c:
sys/dev/xen/xenpci/xenpcivar.h:
New implementation of Xen interrupt services. This is
similar in many respects to the i386 PV implementation with
the exception that events for bound to event channel ports
(i.e. not IPI, virtual IRQ, or physical IRQ) are further
optimized to avoid mask/unmask operations that aren't
necessary for these edge triggered events.
Stubs exist for supporting physical IRQ binding, but will
need additional work before this implementation can be
fully shared between PV and HVM.
sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
sys/i386/xen/mp_machdep.c
sys/x86/xen/hvm.c:
Add support for placing vcpu_info into an arbritary memory
page instead of using HYPERVISOR_shared_info->vcpu_info.
This allows the creation of domains with more than 32 vcpus.
sys/i386/i386/machdep.c:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/exception.s:
Add support for new event channle implementation.
It was actually done in r86301 but reverted in r150182 because GCC 3.x was
not able to handle it for a memory operand. Apparently, this problem was
fixed in GCC 4.1+ and several contrib sources already rely on this feature.
The variable _logname_valid is not exported via the version script;
therefore, change C and i386/amd64 assembler code to remove indirection
(which allowed interposition). This makes the code slightly smaller and
faster.
Also, remove #define PIC_GOT from i386/amd64 in !PIC mode. Without PIC,
there is no place containing the address of each variable, so there is no
possible definition for PIC_GOT.
Issues were noted by Bruce Evans and are present on all architectures.
On i386, a counter fetch should use atomic read of 64bit value,
otherwise carry from the increment on other CPU could be lost for the
given fetch, making error of 2^32. If 64bit read (cmpxchg8b) is not
available on the machine, it cannot be SMP and it is enough to disable
preemption around read to avoid the split read.
On x86 the counter increment is not atomic on purpose, which makes it
possible for the store of the incremented result to override just
zeroed per-cpu slot. The effect would be a counter going off by
arbitrary value after zeroing. Perform the counter zeroing on the
same processor which does the increments, making the operations
mutually exclusive. On i386, same as for the fetching, if the
cmpxchg8b is not available, machine is not SMP and we disable
preemption for zeroing.
PowerPC64 is treated the same as amd64.
For other architectures, the changes made to allow the compilation to
succeed, without fixing the issues with zeroing or fetching. It
should be possible to handle them by using the 64bit loads and stores
atomic WRT preemption (assuming the architectures also converted from
using critical sections to proper asm). If architecture does not
provide the facility, using global (spin) mutex would be non-optimal
but working solution.
Noted by: bde
Sponsored by: The FreeBSD Foundation
Move FreeBSD from interface version 0x00030204 to 0x00030208.
Updates are required to our grant table implementation before we
can bump this further.
sys/xen/hvm.h:
Replace the implementation of hvm_get_parameter(), formerly located
in sys/xen/interface/hvm/params.h. Linux has a similar file which
primarily stores this function.
sys/xen/xenstore/xenstore.c:
Include new xen/hvm.h header file to get hvm_get_parameter().
sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
Correctly protect function definition and variables from being
included into assembly files in xen-os.h
Xen memory barriers are now prefixed with "xen_" to avoid conflicts
with OS native primatives. Define Xen memory barriers in terms of
the native FreeBSD primatives.
Sponsored by: Spectra Logic Corporation
Reviewed by: Roger Pau Monné
Tested by: Roger Pau Monné
Obtained from: Roger Pau Monné (bug fixes)
1. Common headers for fdt.h and ofw_machdep.h under x86/include
with indirections under i386/include and amd64/include.
2. New modinfo for loader provided FDT blob.
3. Common x86_init_fdt() called from hammer_time() on amd64 and
init386() on i386.
4. Split-off FDT specific low-level console functions from FDT
bus methods for the uart(4) driver. The low-level console
logic has been moved to uart_cpu_fdt.c and is used for arm,
mips & powerpc only. The FDT bus methods are shared across
all architectures.
5. Add dev/fdt/fdt_x86.c to hold the fdt_fixup_table[] and the
fdt_pic_table[] arrays. Both are empty right now.
FDT addresses are I/O ports on x86. Since the core FDT code does
not handle different address spaces, adding support for both I/O
ports and memory addresses requires some thought and discussion.
It may be better to use a compile-time option that controls this.
Obtained from: Juniper Networks, Inc.
order to match the MAXCPU concept. The change should also be useful
for consolidation and consistency.
Sponsored by: EMC / Isilon storage division
Obtained from: jeff
Reviewed by: alc
Introduce counter(9) API, that implements fast and raceless counters,
provided (but not limited to) for gathering of statistical data.
See http://lists.freebsd.org/pipermail/freebsd-arch/2013-April/014204.html
for more details.
In collaboration with: kib
Reviewed by: luigi
Tested by: ae, ray
Sponsored by: Nginx, Inc.
buffer map size, auto-tuned on the 4GB machine. Having the maxbcache
bigger than the buffer map causes the transient bio map sizing logic
to assume that there is enough KVA to use approximately 90MB (buffer
map is sized to 110MB, and maxbcache is 200MB). The increase in the
KVA usage caused other big KVA consumers, like nvidia.ko, to fail the
initialization.
Change the definition for both PAE and non-PAE cases, since PAE is
even more KVA-starved.
Reported and tested by: David Wolfskill
Discussed with: alc
Sponsored by: The FreeBSD Foundation
Replace the per-object resident and cached pages splay tree with a
path-compressed multi-digit radix trie.
Along with this, switch also the x86-specific handling of idle page
tables to using the radix trie.
This change is supposed to do the following:
- Allowing the acquisition of read locking for lookup operations of the
resident/cached pages collections as the per-vm_page_t splay iterators
are now removed.
- Increase the scalability of the operations on the page collections.
The radix trie does rely on the consumers locking to ensure atomicity of
its operations. In order to avoid deadlocks the bisection nodes are
pre-allocated in the UMA zone. This can be done safely because the
algorithm needs at maximum one new node per insert which means the
maximum number of the desired nodes is the number of available physical
frames themselves. However, not all the times a new bisection node is
really needed.
The radix trie implements path-compression because UFS indirect blocks
can lead to several objects with a very sparse trie, increasing the number
of levels to usually scan. It also helps in the nodes pre-fetching by
introducing the single node per-insert property.
This code is not generalized (yet) because of the possible loss of
performance by having much of the sizes in play configurable.
However, efforts to make this code more general and then reusable in
further different consumers might be really done.
The only KPI change is the removal of the function vm_page_splay() which
is now reaped.
The only KBI change, instead, is the removal of the left/right iterators
from struct vm_page, which are now reaped.
Further technical notes broken into mealpieces can be retrieved from the
svn branch:
http://svn.freebsd.org/base/user/attilio/vmcontention/
Sponsored by: EMC / Isilon storage division
In collaboration with: alc, jeff
Tested by: flo, pho, jhb, davide
Tested by: ian (arm)
Tested by: andreast (powerpc)
Rename the pv_entry_t iterator from pv_list to pv_next.
Besides being more correct technically (as the name seems to suggest
this is a list while it is an iterator), it will also be needed by
vm_radix work to avoid a nameclash on macro expansions.
Sponsored by: EMC / Isilon storage division
Reviewed by: alc, jeff
Tested by: flo, pho, jhb, davide
machine/signal.h and machine/ucontext.h into common x86 includes,
copying from amd64 and merging with i386.
Kernel-only compat definitions are kept in the i386/include/sigframe.h
and i386/include/signal.h, to reduce amd64 kernel namespace pollution.
The amd64 compat uses its own definitions so far.
The _MACHINE_ELF_WANT_32BIT definition is to allow the
sys/boot/userboot/userboot/elf32_freebsd.c to use i386 ELF definitions
on the amd64 compile host. The same hack could be usefully abused by
other code too.
- change 'pics' from STAILQ to TAILQ
- ensure that Local APIC is always first in 'pics'
Reviewed by: jhb
Tested by: Sergey V. Dyatko <sergey.dyatko@gmail.com>,
KAHO Toshikazu <kaho@elam.kais.kyoto-u.ac.jp>
MFC after: 12 days
Some hooks are added to clamp down maxusers and nmbclusters for
small address space systems.
VM_MAX_AUTOTUNE_MAXUSERS - the max maxusers that will be autotuned based on
physical memory.
VM_MAX_AUTOTUNE_NMBCLUSTERS - max nmbclusters based on physical memory.
These are set to the old values on i386 to preserve the clamping that was
being done to all arches.
Another macro VM_AUTOTUNE_NMBCLUSTERS is provided to allow an override
for the calculation on a MD basis. Currently no arch defines this.
Reviewed by: peter
MFC after: 2 weeks
instruction loads/stores at its will.
The macro __compiler_membar() is currently supported for both gcc and
clang, but kernel compilation will fail otherwise.
Reviewed by: bde, kib
Discussed with: dim, theraven
MFC after: 2 weeks
r234247.
Use, instead, the static intializer introduced in r239923 for x86 and
sparc64 intr_cpus, unwinding the code to the initial version.
Reviewed by: marius
bits under #ifdef _KERNEL but leave definitions for various structures
defined by standards ($PIR table, SMAP entries, etc.) available to
userland.
- Consolidate duplicate SMBIOS table structure definitions in ipmi(4)
and smbios(4) in <machine/pc/bios.h> and make them available to
userland.
MFC after: 2 weeks
on x86 and use that to implement stop_emulating() in the fpu/npx code.
Reimplement start_emulating() in the non-XEN case by using load_cr0() and
rcr0() instead of the 'lmsw' and 'smsw' instructions. Intel explicitly
discourages the use of 'lmsw' and 'smsw' on 80386 and later processors in
the description of these instructions in Volume 2 of the ADM.
Reviewed by: kib
MFC after: 1 month
usermode, using shared page. The structures and functions have vdso
prefix, to indicate the intended location of the code in some future.
The versioned per-algorithm data is exported in the format of struct
vdso_timehands, which mostly repeats the content of in-kernel struct
timehands. Usermode reading of the structure can be lockless.
Compatibility export for 32bit processes on 64bit host is also
provided. Kernel also provides usermode with indication about
currently used timecounter, so that libc can fall back to syscall if
configured timecounter is unknown to usermode code.
The shared data updates are initiated both from the tc_windup(), where
a fast task is queued to do the update, and from sysctl handlers which
change timecounter. A manual override switch
kern.timecounter.fast_gettime allows to turn off the mechanism.
Only x86 architectures export the real algorithm data, and there, only
for tsc timecounter. HPET counters page could be exported as well, but
I prefer to not further glue the kernel and libc ABI there until
proper vdso-based solution is developed.
Minimal stubs neccessary for non-x86 architectures to still compile
are provided.
Discussed with: bde
Reviewed by: jhb
Tested by: flo
MFC after: 1 month
layer, but it is read directly by the MI VM layer. This change introduces
pmap_page_is_write_mapped() in order to completely encapsulate all direct
access to PGA_WRITEABLE in the pmap layer.
Aesthetics aside, I am making this change because amd64 will likely begin
using an alternative method to track write mappings, and having
pmap_page_is_write_mapped() in place allows me to make such a change
without further modification to the MI VM layer.
As an added bonus, tidy up some nearby comments concerning page flags.
Reviewed by: kib
MFC after: 6 weeks
suspend/resume procedures are minimized among them.
common:
- Add global cpuset suspended_cpus to indicate APs are suspended/resumed.
- Remove acpi_waketag and acpi_wakemap from acpivar.h (no longer used).
- Add some variables in acpi_wakecode.S in order to minimize the difference
among amd64 and i386.
- Disable load_cr3() because now CR3 is restored in resumectx().
amd64:
- Add suspend/resume related members (such as MSR) in PCB.
- Modify savectx() for above new PCB members.
- Merge acpi_switch.S into cpu_switch.S as resumectx().
i386:
- Merge(and remove) suspendctx() into savectx() in order to match with
amd64 code.
Reviewed by: attilio@, acpi@
locked xchg instruction. IA32 memory model guarantees that store has
release semantic, since stores cannot pass loads or stores.
Reviewed by: bde, jhb
Tested by: pho
MFC after: 2 weeks
longer uses the active and inactive paging queues. Instead, the pmap now
maintains an LRU-ordered list of pv entry pages, and pmap_pv_reclaim() uses
this list to select pv entries for reclamation.
Note: The old pmap_collect() tried to avoid reclaiming mappings for pages
that have either a hold_count or a busy field that is non-zero. However,
this isn't necessary for correctness, and the locking in pmap_collect() was
insufficient to guarantee that such mappings weren't reclaimed. The new
pmap_pv_reclaim() doesn't even try.
MFC after: 5 weeks
in_cksum.h required ip.h to be included for struct ip. To be
able to use some general checksum functions like in_addword()
in a non-IPv4 context, limit the (also exported to user space)
IPv4 specific functions to the times, when the ip.h header is
present and IPVERSION is defined (to 4).
We should consider more general checksum (updating) functions
to also allow easier incremental checksum updates in the L3/4
stack and firewalls, as well as ponder further requirements by
certain NIC drivers needing slightly different pseudo values
in offloading cases. Thinking in terms of a better "library".
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
Reviewed by: gnn (as part of the whole)
MFC After: 3 days
Most part is merged from amd64.
- i386/acpica/acpi_wakecode.S
Replaced with amd64 code (from realmode to paging enabling code).
- i386/acpica/acpi_wakeup.c
Replaced with amd64 code (except for wakeup_pagetables stuff).
- i386/include/pcb.h
- i386/i386/genassym.c
Added PCB new members (CR0, CR2, CR4, DS, ED, FS, SS, GDT, IDT, LDT
and TR) needed for suspend/resume, not for context switch.
- i386/i386/swtch.s
Added suspendctx() and resumectx().
Note that savectx() was not changed and used for suspending (while
amd64 code uses it).
BSP and AP execute the same sequence, suspendctx(), acpi_wakecode()
and resumectx() for suspend/resume (in case of UP system also).
- i386/i386/apic_vector.s
Added cpususpend().
- i386/i386/mp_machdep.c
- i386/include/smp.h
Added cpususpend_handler().
- i386/include/apicvar.h
- kern/subr_smp.c
- sys/smp.h
Added IPI_SUSPEND and suspend_cpus().
- i386/i386/initcpu.c
- i386/i386/machdep.c
- i386/include/md_var.h
- pc98/pc98/machdep.c
Moved initializecpu() declarations to md_var.h.
MFC after: 3 days
intr_bind() on x86.
This has been requested by jhb and I strongly disagree with this,
but as long as he is the x86 and interrupt subsystem maintainer I will
follow his directives.
The disagreement cames from what we should really consider as a
public KPI. IMHO, if we really need a selection between the kernel
functions, we may need an explicit protection like _KERNEL_KPI, which
defines which subset of the kernel function might really be considered
as part of the KPI (for thirdy part modules) and which not.
As long as we don't have this mechanism I just consider any possible
function as usable by thirdy part code, thus intr_bind() included.
MFC after: 1 week
discrepancy between modules and kernel, but deal with SMP differences
within the functions themselves.
As an added bonus this also helps in terms of code readability.
Requested by: gibbs
Reviewed by: jhb, marius
MFC after: 1 week
bridges. Rather than blindly enabling the windows on all of them, only
enable the window when an MSI interrupt is enabled for a device behind
the bridge, similar to what already happens for HT PCI-PCI bridges.
To implement this, each x86 Host-PCI bridge driver has to be able to
locate it's actual backing device on bus 0. For ACPI, use the _ADR
method to find the slot and function of the device. For the non-ACPI
case, the legacy(4) driver already scans bus 0 looking for Host-PCI
bridge devices. Now it saves the slot and function of each bridge that
it finds as ivars that the Host-PCI bridge driver can then use in its
pcib_map_msi() method.
This fixes machines where non-MSI interrupts were broken by the previous
round of HT MSI changes.
Tested by: bapt
MFC after: 1 week
be less ambiguous and more clearly identify what it means. This
attribute is what Intel refers to as UC-, and it's only difference
relative to normal UC memory is that a WC MTRR will override a UC-
PAT entry causing the memory to be treated as WC, whereas a UC PAT
entry will always override the MTRR.
- Remove the VM_MEMATTR_UNCACHED alias from powerpc.
New kernel events can be added at various location for sampling or counting.
This will for example allow easy system profiling whatever the processor is
with known tools like pmcstat(8).
Simultaneous usage of software PMC and hardware PMC is possible, for example
looking at the lock acquire failure, page fault while sampling on
instructions.
Sponsored by: NETASQ
MFC after: 1 month
kernel.
When access restrictions are added to a page table entry, we flush the
corresponding virtual address mapping from the TLB. In contrast, when
access restrictions are removed from a page table entry, we do not
flush the virtual address mapping from the TLB. This is exactly as
recommended in AMD's documentation. In effect, when access
restrictions are removed from a page table entry, AMD's MMUs will
transparently refresh a stale TLB entry. In short, this saves us from
having to perform potentially costly TLB flushes. In contrast,
Intel's MMUs are allowed to generate a spurious page fault based upon
the stale TLB entry. Usually, such spurious page faults are handled
by vm_fault() without incident. However, when we are executing
no-fault sections of the kernel, we are not allowed to execute
vm_fault(). This change introduces special-case handling for spurious
page faults that occur in no-fault sections of the kernel.
In collaboration with: kib
Tested by: gibbs (an earlier version)
I would also like to acknowledge Hiroki Sato's assistance in
diagnosing this problem.
MFC after: 1 week
segments.h to a new x86 segments.h.
Add __packed attribute to some structs (just to be sure).
Also make it clear that i386 GDT and LDT entries are used in ia64 code.
reg.h with stubs.
The tREGISTER macros are only made visible on i386. These macros are
deprecated and should not be available on amd64.
The i386 and amd64 versions of struct reg have been renamed to struct
__reg32 and struct __reg64. During compilation either __reg32 or __reg64
is defined as reg depending on the machine architecture. On amd64 the i386
struct is also available as struct reg32 which is used in COMPAT_FREEBSD32
code.
Most of compat/ia32/ia32_reg.h is now IA64 only.
Reviewed by: kib (previous version)
Remove FPU types from compat/ia32/ia32_reg.h that are no longer needed.
Create machine/npx.h on amd64 to allow compiling i386 code that uses
this header.
The original npx.h and fpu.h define struct envxmm differently. Both
definitions have been included in the new x86 header as struct __envxmm32
and struct __envxmm64. During compilation either __envxmm32 or __envxmm64
is defined as envxmm depending on machine architecture. On amd64 the i386
struct is also available as struct envxmm32.
Reviewed by: kib
amd64, if 'device isa' is present quiesce the 8259A's during boot and
resume from suspend.
While here, be more selective on amd64 about which kernel configurations
need elcr.c.
MFC after: 2 weeks
amd64/i386/pc98 ptrace.h with stubs.
For amd64 PT_GETXSTATE and PT_SETXSTATE have been redefined to match the
i386 values. The old values are still supported but should no longer be
used.
Reviewed by: kib
amd64/i386/pc98 endian.h with stubs.
In __bswap64_const(x) the conflict between 0xffUL and 0xffULL has been
resolved by reimplementing the macro in terms of __bswap32(x). As a side
effect __bswap64_var(x) is now implemented using two bswap instructions on
i386 and should be much faster. __bswap32_const(x) has been reimplemented
in terms of __bswap16(x) for consistency.
netback.c: Add missing VM includes.
xen/xenvar.h,
xen/xenpmap.h: Move some XENHVM macros from <machine/xen/xenpmap.h> to
<machine/xen/xenvar.h> on i386 to match the amd64 headers.
conf/files: Add netback to the build.
Submitted by: jhb
MFC after: 3 days
64bit and 32bit ABIs. As a side-effect, it enables AVX on capable
CPUs.
In particular:
- Query the CPU support for XSAVE, list of the supported extensions
and the required size of FPU save area. The hw.use_xsave tunable is
provided for disabling XSAVE, and hw.xsave_mask may be used to
select the enabled extensions.
- Remove the FPU save area from PCB and dynamically allocate the
(run-time sized) user save area on the top of the kernel stack,
right above the PCB. Reorganize the thread0 PCB initialization to
postpone it after BSP is queried for save area size.
- The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as
well. FPU state is only useful for suspend, where it is saved in
dynamically allocated suspfpusave area.
- Use XSAVE and XRSTOR to save/restore FPU state, if supported and
enabled.
- Define new mcontext_t flag _MC_HASFPXSTATE, indicating that
mcontext_t has a valid pointer to out-of-struct extended FPU
state. Signal handlers are supplied with stack-allocated fpu
state. The sigreturn(2) and setcontext(2) syscall honour the flag,
allowing the signal handlers to inspect and manipilate extended
state in the interrupted context.
- The getcontext(2) never returns extended state, since there is no
place in the fixed-sized mcontext_t to place variable-sized save
area. And, since mcontext_t is embedded into ucontext_t, makes it
impossible to fix in a reasonable way. Instead of extending
getcontext(2) syscall, provide a sysarch(2) facility to query
extended FPU state.
- Add ptrace(2) support for getting and setting extended state; while
there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries.
- Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to
consumers, making it opaque. Internally, struct fpu_kern_ctx now
contains a space for the extended state. Convert in-kernel consumers
of fpu_kern KPI both on i386 and amd64.
First version of the support for AVX was submitted by Tim Bird
<tim.bird am sony com> on behalf of Sony. This version was written
from scratch.
Tested by: pho (previous version), Yamagi Burmeister <lists yamagi org>
MFC after: 1 month
VM_KMEM_SIZE_MAX. Specifically, if the user/kernel address space split
was changed such that the kernel address space was greater than or equal
to 2 GB, then overflow would occur.
PR: 161721
MFC after: 3 weeks
31, but that vector is reserved.
Without this fix, running dtrace -p <pid> would either cause the target
process to crash or the kernel to page fault.
Obtained from: rpaulo
MFC after: 3days
implement a deprecated FPU control interface in addition to the
standard one. To make this clearer, further deprecate ieeefp.h
by not declaring the function prototypes except on architectures
that implement them already.
Currently i386 and amd64 implement the ieeefp.h interface for
compatibility, and for fp[gs]etprec(), which doesn't exist on
most other hardware. Powerpc, sparc64, and ia64 partially implement
it and probably shouldn't, and other architectures don't implement it
at all.
This patch is going to help in cases like mips flavours where you
want a more granular support on MAXCPU.
No MFC is previewed for this patch.
Tested by: pluknet
Approved by: re (kib)
%rcx as "extensions" in long mode. If any unused bit is set in %rcx, these
instructions cause general protection fault. Fix style nits and synchronize
i386 with amd64.
The code has definitely been broken for SCHED_ULE, which is a default
scheduler. It may have been broken for SCHED_4BSD in more subtle ways,
e.g. with manually configured CPU affinities and for interrupt devilery
purposes.
We still provide a way to disable individual CPUs or all hyperthreading
"twin" CPUs before SMP startup. See the UPDATING entry for details.
Interaction between building CPU topology and disabling CPUs still
remains fuzzy: topology is first built using all availble CPUs and then
the disabled CPUs should be "subtracted" from it. That doesn't work
well if the resulting topology becomes non-uniform.
This work is done in cooperation with Attilio Rao who in addition to
reviewing also provided parts of code.
PR: kern/145385
Discussed with: gcooper, ambrisko, mdf, sbruno
Reviewed by: attilio
Tested by: pho, pluknet
X-MFC after: never
Note AMD dropped SSE5 extensions in order to avoid ISA overlap with Intel
AVX instructions. The SSE5 bit was recycled as XOP extended instruction
bit, CVT16 was deprecated in favor of F16C (half-precision float conversion
instructions for AVX), and the remaining FMA4 (4-operand FMA instructions)
gained a separate CPUID bit. Replace non-existent references with today's
CPUID specifications.
architectures (i386, for example) the virtual memory space may be
constrained enough that 2MB is a large chunk. Use 64K for arches
other than amd64 and ia64, with special handling for sparc64 due to
differing hardware.
Also commit the comment changes to kmem_init_zero_region() that I
missed due to not saving the file. (Darn the unfamiliar development
environment).
Arch maintainers, please feel free to adjust ZERO_REGION_SIZE as you
see fit.
Requested by: alc
MFC after: 1 week
MFC with: r221853
when the user has indicated that the system has synchronized TSCs or it has
P-state invariant TSCs. For the former case, we may clear the tunable if it
fails the test to prevent accidental foot-shooting. For the latter case, we
may set it if it passes the test to notify the user that it may be usable.
This also introduces a new detection path for family 10h and newer
pre-bulldozer cpus, pre-10h hardware should not be affected.
Tested by: Gary Jennejohn <gljennjohn@googlemail.com>
(with pre-10h hardware)
MFC after: 2 weeks
cpuset_t objects.
That is going to offer the underlying support for a simple bump of
MAXCPU and then support for number of cpus > 32 (as it is today).
Right now, cpumask_t is an int, 32 bits on all our supported architecture.
cpumask_t on the other side is implemented as an array of longs, and
easilly extendible by definition.
The architectures touched by this commit are the following:
- amd64
- i386
- pc98
- arm
- ia64
- XEN
while the others are still missing.
Userland is believed to be fully converted with the changes contained
here.
Some technical notes:
- This commit may be considered an ABI nop for all the architectures
different from amd64 and ia64 (and sparc64 in the future)
- per-cpu members, which are now converted to cpuset_t, needs to be
accessed avoiding migration, because the size of cpuset_t should be
considered unknown
- size of cpuset_t objects is different from kernel and userland (this is
primirally done in order to leave some more space in userland to cope
with KBI extensions). If you need to access kernel cpuset_t from the
userland please refer to example in this patch on how to do that
correctly (kgdb may be a good source, for example).
- Support for other architectures is going to be added soon
- Only MAXCPU for amd64 is bumped now
The patch has been tested by sbruno and Nicholas Esborn on opteron
4 x 12 pack CPUs. More testing on big SMP is expected to came soon.
pluknet tested the patch with his 8-ways on both amd64 and i386.
Tested by: pluknet, sbruno, gianni, Nicholas Esborn
Reviewed by: jeff, jhb, sbruno
function on the possibility of a thread to not preempt.
As this function is very tied to x86 (interrupts disabled checkings)
it is not intended to be used in MI code.
Add pmap_invalidate_cache_pages() method on x86. It flushes the CPU
cache for the set of pages, which are not neccessary mapped. Since its
supposed use is to prepare the move of the pages ownership to a device
that does not snoop all CPU accesses to the main memory (read GPU in
GMCH), do not rely on CPU self-snoop feature.
amd64 implementation takes advantage of the direct map. On i386,
extract the helper pmap_flush_page() from pmap_page_set_memattr(), and
use it to make a temporary mapping of the flushed page.
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
32 bits. Some times compiler inserts unnecessary instructions to preserve
unused upper 32 bits even when it is casted to a 32-bit value. It reduces
such compiler mistakes where every cycle counts.
functions are implemented with CMPXCHG8B instruction where it is available,
i. e., all Pentium-class and later processors. Note this instruction is
also used for atomic_store_rel_64() because a simple XCHG-like instruction
for 64-bit memory access does not exist, unfortunately. If the processor
lacks the instruction, i. e., 80486-class CPUs, two 32-bit load/store are
performed with interrupt temporarily disabled, assuming it does not support
SMP. Although this assumption may be little naive, it is true in reality.
This implementation is inspired by Linux.
at run-time on i386. cpu_ticks() is set to use RDTSC early enough on i386
where it is available. Otherwise, cpu_ticks() is driven by the current
timecounter hardware as binuptime(9) does. This also avoids unnecessary
namespace pollution from <machine/cputypes.h>.
Also, express this new maximum as a fraction of the kernel's address
space size rather than a constant so that increasing KVA_PAGES will
automatically increase this maximum. As a side-effect of this change,
kern.maxvnodes will automatically increase by a proportional amount.
While I'm here ensure that this change doesn't result in an unintended
increase in maxpipekva on i386. Calculate maxpipekva based upon the
size of the kernel address space and the amount of physical memory
instead of the size of the kmem map. The memory backing pipes is not
allocated from the kmem map. It is allocated from its own submap of
the kernel map. In short, it has no real connection to the kmem map.
(In fact, the commit messages for the maxpipekva auto-sizing talk
about using the kernel map size, cf. r117325 and r117391, even though
the implementation actually used the kmem map size.) Although the
calculation is now done differently, the resulting value for
maxpipekva should remain almost the same on i386. However, on amd64,
the value will be reduced by 2/3. This is intentional. The recent
change to VM_KMEM_SIZE_SCALE on amd64 for the benefit of ZFS also had
the unnecessary side-effect of increasing maxpipekva. This change is
effectively restoring maxpipekva on amd64 to its prior value.
Eliminate init_param3() since it is no longer used.
Unfortunately, it pulls in <machine/cputypes.h> but it is small enough and
namespace pollution is minimal, I hope.
Pointed out by: bde
Pointy hat: jkim
soon as possible for stack protector. However, dummy timecounter does not
have enough entropy and we don't need to sacrifice Pentium class and later.
Pointed out by: Maxim Dounin (mdounin at mdounin dot ru)
Compile sys/dev/mem/memutil.c for all supported platforms and remove now
unnecessary dev_mem_md_init(). Consistently define mem_range_softc from
mem.c for all platforms. Add missing #include guards for machine/memdev.h
and sys/memrange.h. Clean up some nearby style(9) nits.
MFC after: 1 month
architecture macros (__mips_n64, __powerpc64__) when 64 bit types (and
corresponding macros) are different from 32 bit. [1]
Correct the type of INT64_MIN, INT64_MAX and UINT64_MAX.
Define (U)INTMAX_C as an alias for (U)INT64_C matching the type definition
for (u)intmax_t. Do this on all architectures for consistency.
Suggested by: bde [1]
Approved by: kib (mentor)
of (unsigned) int __attribute__((__mode__(__DI__))). This aligns better
with macros such as (U)INT64_C, (U)INT64_MAX, etc. which assume (u)int64_t
has type (unsigned) long long.
The mode attribute was used because long long wasn't standardised until
C99. Nowadays compilers should support long long and use of the mode
attribute is discouraged according to GCC Internals documentation.
The type definition has to be marked with __extension__ to support
compilation with "-std=c89 -pedantic".
Discussed with: bde
Approved by: kib (mentor)
On some architectures UCHAR_MAX and USHRT_MAX had type unsigned int.
However, lacking integer suffixes for types smaller than int, their type
should correspond to that of an object of type unsigned char (or short)
when used in an expression with objects of type int. In that case unsigned
char (short) are promoted to int (i.e. signed) so the type of UCHAR_MAX and
USHRT_MAX should also be int.
Where MIN/MAX constants implicitly have the correct type the suffix has
been removed.
While here, correct some comments.
Reviewed by: bde
Approved by: kib (mentor)
It was used mainly to discover and fix some 64-bit portability problems
before 64-bit arches were widely available.
Discussed with: bde
Approved by: kib (mentor)
mechanical change. This opens the door for using PV device drivers
under Xen HVM on i386, as well as more general harmonisation of i386
and amd64 Xen support in FreeBSD.
Reviewed by: cperciva
MFC after: 3 weeks
When cleaning up a thread, reset its LDT to the default LDT.
Note: Casting the LDT pointer to an int and storing it in pc_currentldt is
wildly bogus, but is harmless since pc_currentldt is a write-only variable.
MFC after: 3 days
Don't map physical to machine page numbers in pte_load_store, since it uses
PT_SET_VA (which takes a physical page number and converts it to a machine
page number).
MFC after: 3 days
the original amd64 and i386 headers with stubs.
Rename (AMD64|I386)_BUS_SPACE_* to X86_BUS_SPACE_* everywhere.
Reviewed by: imp (previous version), jhb
Approved by: kib (mentor)
Passing a count of zero on i386 and amd64 for [I386|AMD64]_BUS_SPACE_MEM
causes a crash/hang since the 'loop' instruction decrements the counter
before checking if it's zero.
PR: kern/80980
Discussed with: jhb
functions, they are unused. Remove 'user' from npxgetuserregs()
etc. names.
For {npx,fpu}{get,set}regs(), always use pcb->pcb_user_save for FPU
context storage. This eliminates the need for ugly copying with
overwrite of the newly added and reserved fields in ucontext on i386
to satisfy alignment requirements for fpusave() and fpurstor().
pc98 version was copied from i386.
Suggested and reviewed by: bde
Tested by: pho (i386 and amd64)
MFC after: 1 week
_HYPERVISOR_multicall, and create a new HYPERVISOR_multicall function which
invokes _HYPERVISOR_multicall and checks that the individual hypercalls all
succeeded.
Clean up the code by converting xpmap_ptom(VTOP(...)) to VTOM(...) and
converting xpmap_ptom(VM_PAGE_TO_PHYS(...)) to VM_PAGE_TO_MACH(...). In
a few places we take advantage of the fact that xpmap_ptom can commute with
setting PG_* flags.
This commit should have no net effect save to improve the readability of
this code.
These MSRs can be used to determine actual (average) performance as
compared to a maximum defined performance.
Availability of these MSRs is indicated by bit0 in CPUID.6.ECX on both
Intel and AMD processors.
MFC after: 5 days
It seems that this MSR has been available in a range of AMD processors
families for quite a while now.
Note1: not all AMD MSRs that are found in amd64 specialreg.h are also in
the i386 version.
Note2: perhaps some additional name component is needed to distinguish
AMD-specific MSRs.
MFC after: 5 days
contents of the ones that were not empty were stale and unused.
- Now that <machine/mutex.h> no longer exists, there is no need to allow it
to override various helper macros in <sys/mutex.h>.
- Rename various helper macros for low-level operations on mutexes to live
in the _mtx_* or __mtx_* namespaces. While here, change the names to more
closely match the real API functions they are backing.
- Drop support for including <sys/mutex.h> in assembly source files.
Suggested by: bde (1, 2)
pmap_kextract()) before pmap_bootstrap() is called.
Document the set of pmap functions that may be called before
pmap_bootstrap() is called.
Tested by: bde@
Reviewed by: kib@
Discussed with: jhb@
MFC after: 6 weeks
The main goal of this is to generate timer interrupts only when there is
some work to do. When CPU is busy interrupts are generating at full rate
of hz + stathz to fullfill scheduler and timekeeping requirements. But
when CPU is idle, only minimum set of interrupts (down to 8 interrupts per
second per CPU now), needed to handle scheduled callouts is executed.
This allows significantly increase idle CPU sleep time, increasing effect
of static power-saving technologies. Also it should reduce host CPU load
on virtualized systems, when guest system is idle.
There is set of tunables, also available as writable sysctls, allowing to
control wanted event timer subsystem behavior:
kern.eventtimer.timer - allows to choose event timer hardware to use.
On x86 there is up to 4 different kinds of timers. Depending on whether
chosen timer is per-CPU, behavior of other options slightly differs.
kern.eventtimer.periodic - allows to choose periodic and one-shot
operation mode. In periodic mode, current timer hardware taken as the only
source of time for time events. This mode is quite alike to previous kernel
behavior. One-shot mode instead uses currently selected time counter
hardware to schedule all needed events one by one and program timer to
generate interrupt exactly in specified time. Default value depends of
chosen timer capabilities, but one-shot mode is preferred, until other is
forced by user or hardware.
kern.eventtimer.singlemul - in periodic mode specifies how much times
higher timer frequency should be, to not strictly alias hardclock() and
statclock() events. Default values are 2 and 4, but could be reduced to 1
if extra interrupts are unwanted.
kern.eventtimer.idletick - makes each CPU to receive every timer interrupt
independently of whether they busy or not. By default this options is
disabled. If chosen timer is per-CPU and runs in periodic mode, this option
has no effect - all interrupts are generating.
As soon as this patch modifies cpu_idle() on some platforms, I have also
refactored one on x86. Now it makes use of MONITOR/MWAIT instrunctions
(if supported) under high sleep/wakeup rate, as fast alternative to other
methods. It allows SMP scheduler to wake up sleeping CPUs much faster
without using IPI, significantly increasing performance on some highly
task-switching loads.
Tested by: many (on i386, amd64, sparc64 and powerc)
H/W donated by: Gheorghe Ardelean
Sponsored by: iXsystems, Inc.
In particular, provide pagesize and pagesizes array, the canary value
for SSP use, number of host CPUs and osreldate.
Tested by: marius (sparc64)
MFC after: 1 month
IPI to a specific CPU by its cpuid. Replace calls to ipi_selected() that
constructed a mask for a single CPU with calls to ipi_cpu() instead. This
will matter more in the future when we transition from cpumask_t to
cpuset_t for CPU masks in which case building a CPU mask is more expensive.
Submitted by: peter, sbruno
Reviewed by: rookie
Obtained from: Yahoo! (x86)
MFC after: 1 month
VM86 calls instead of the real mode emulator as a backend. VM86 has been
proven reliable for very long time and it is actually few times faster than
emulation. Increase maximum number of page table entries per VM86 context
from 3 to 8 pages. It was (ridiculously) low and insufficient for new VM86
backend, which shares one context globally. Slighly rearrange and clean up
the emulator backend to accommodate new code. The only visible change here
is stack size, which is decreased from 64K to 4K bytes to sync. with VM86.
Actually, it seems there is no need for big stack in real mode.
MFC after: 1 month
Xeon 5500/5600 series:
- Utilize IA32_TEMPERATURE_TARGET, a.k.a. Tj(target) in place
of Tj(max) when a sane value is available, as documented
in Intel whitepaper "CPU Monitoring With DTS/PECI"; (By sane
value we mean 70C - 100C for now);
- Print the probe results when booting verbose;
- Replace cpu_mask with cpu_stepping;
- Use CPUID_* macros instead of rolling our own.
Approved by: rpaulo
MFC after: 1 month
from the inline assembly. This allows the compiler to cache invocations of
curthread since it's value does not change within a thread context.
Submitted by: zec (i386)
MFC after: 1 week
now it uses a very dumb first-touch allocation policy. This will change in
the future.
- Each architecture indicates the maximum number of supported memory domains
via a new VM_NDOMAIN parameter in <machine/vmparam.h>.
- Each cpu now has a PCPU_GET(domain) member to indicate the memory domain
a CPU belongs to. Domain values are dense and numbered from 0.
- When a platform supports multiple domains, the default freelist
(VM_FREELIST_DEFAULT) is split up into N freelists, one for each domain.
The MD code is required to populate an array of mem_affinity structures.
Each entry in the array defines a range of memory (start and end) and a
domain for the range. Multiple entries may be present for a single
domain. The list is terminated by an entry where all fields are zero.
This array of structures is used to split up phys_avail[] regions that
fall in VM_FREELIST_DEFAULT into per-domain freelists.
- Each memory domain has a separate lookup-array of freelists that is
used when fulfulling a physical memory allocation. Right now the
per-domain freelists are listed in a round-robin order for each domain.
In the future a table such as the ACPI SLIT table may be used to order
the per-domain lookup lists based on the penalty for each memory domain
relative to a specific domain. The lookup lists may be examined via a
new vm.phys.lookup_lists sysctl.
- The first-touch policy is implemented by using PCPU_GET(domain) to
pick a lookup list when allocating memory.
Reviewed by: alc
- change the type of pm_active to cpumask_t, which it is;
- in pmap_remove_pages(), compare with PCPU(curpmap), instead of
dereferencing the long chain of pointers [1].
For amd64 pmap, remove the unneeded checks for validity of curpmap
in pmap_activate(), since curpmap should be always valid after
r209789.
Submitted by: alc [1]
Reviewed by: alc
MFC after: 3 weeks
believed that all 486-class CPUs FreeBSD is capable to run on, either
have no FPU and cannot use external coprocessor, or have FPU on the
package and can use #MF.
Reviewed by: bde
Tested by: pho (previous version)
FPU registers for copying. Remove the switch table and jumps from
bcopy/bzero/... to the actual implementation.
As a side-effect, i486-optimized bzero is removed.
Reviewed by: bde
Tested by: pho (previous version)
writing event timer drivers, for choosing best possible drivers by machine
independent code and for operating them to supply kernel with hardclock(),
statclock() and profclock() events in unified fashion on various hardware.
Infrastructure provides support for both per-CPU (independent for every CPU
core) and global timers in periodic and one-shot modes. MI management code
at this moment uses only periodic mode, but one-shot mode use planned for
later, as part of tickless kernel project.
For this moment infrastructure used on i386 and amd64 architectures. Other
archs are welcome to follow, while their current operation should not be
affected.
This patch updates existing drivers (i8254, RTC and LAPIC) for the new
order, and adds event timers support into the HPET driver. These drivers
have different capabilities:
LAPIC - per-CPU timer, supports periodic and one-shot operation, may
freeze in C3 state, calibrated on first use, so may be not exactly precise.
HPET - depending on hardware can work as per-CPU or global, supports
periodic and one-shot operation, usually provides several event timers.
i8254 - global, limited to periodic mode, because same hardware used also
as time counter.
RTC - global, supports only periodic mode, set of frequencies in Hz
limited by powers of 2.
Depending on hardware capabilities, drivers preferred in following orders,
either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC.
User may explicitly specify wanted timers via loader tunables or sysctls:
kern.eventtimer.timer1 and kern.eventtimer.timer2.
If requested driver is unavailable or unoperational, system will try to
replace it. If no more timers available or "NONE" specified for second,
system will operate using only one timer, multiplying it's frequency by few
times and uing respective dividers to honor hz, stathz and profhz values,
set during initial setup.
FPU/SSE hardware. Caller should provide a save area that is chained
into the stack of the areas; pcb save_area for usermode FPU state is
on top. The pcb now contains a pointer to the current FPU saved area,
used during FPUDNA handling and context switches. There is also a
facility to allow the kernel thread to use pcb save_area.
Change the dreaded warnings "npxdna in kernel mode!" into the panics
when FPU usage is not registered.
KPI discussed with: fabient
Tested by: pho, fabient
Hardware provided by: Sentex Communications
MFC after: 1 month
fields that is always included in PCPU_MD_FIELDS. The macro is empty for
non-XEN kernels. This avoids duplicating non-XEN per-CPU fields in two
places. While here, remove several unused fields from the XEN-specific
structure.
Reviewed by: kmacy, gibbs
MFC after: 1 month
APIC interrupt that fires when a threshold of corrected machine check
events is reached. CMCI also includes a count of events when reporting
corrected errors in the bank's status register. Note that individual
banks may or may not support CMCI. If they do, each bank includes its own
threshold register that determines when the interrupt fires. Currently
the code uses a very simple strategy where it doubles the threshold on
each interrupt until it succeeds in throttling the interrupt to occur
only once a minute (this interval can be tuned via sysctl). The threshold
is also adjusted on each hourly poll which will lower the threshold once
events stop occurring.
Tested by: Sailaja Bangaru sbappana at yahoo com
MFC after: 1 month
arbitrary frequencies into hardclock(), statclock() and profclock() calls.
Same code with minor variations duplicated several times over the tree for
different timer drivers and architectures.
- Switch all x86 archs to new functions, simplifying the code and removing
extra logic from timer drivers. Other archs are also welcome.
Extend struct sysvec with three new elements:
sv_fetch_syscall_args - the method to fetch syscall arguments from
usermode into struct syscall_args. The structure is machine-depended
(this might be reconsidered after all architectures are converted).
sv_set_syscall_retval - the method to set a return value for usermode
from the syscall. It is a generalization of
cpu_set_syscall_retval(9) to allow ABIs to override the way to set a
return value.
sv_syscallnames - the table of syscall names.
Use sv_set_syscall_retval in kern_sigsuspend() instead of hardcoding
the call to cpu_set_syscall_retval().
The new functions syscallenter(9) and syscallret(9) are provided that
use sv_*syscall* pointers and contain the common repeated code from
the syscall() implementations for the architecture-specific syscall
trap handlers.
Syscallenter() fetches arguments, calls syscall implementation from
ABI sysent table, and set up return frame. The end of syscall
bookkeeping is done by syscallret().
Take advantage of single place for MI syscall handling code and
implement ptrace_lwpinfo pl_flags PL_FLAG_SCE, PL_FLAG_SCX and
PL_FLAG_EXEC. The SCE and SCX flags notify the debugger that the
thread is stopped at syscall entry or return point respectively. The
EXEC flag augments SCX and notifies debugger that the process address
space was changed by one of exec(2)-family syscalls.
The i386, amd64, sparc64, sun4v, powerpc and ia64 syscall()s are
changed to use syscallenter()/syscallret(). MIPS and arm are not
converted and use the mostly unchanged syscall() implementation.
Reviewed by: jhb, marcel, marius, nwhitehorn, stas
Tested by: marcel (ia64), marius (sparc64), nwhitehorn (powerpc),
stas (mips)
MFC after: 1 month
architecture from page queue lock to a hashed array of page locks
(based on a patch by Jeff Roberson), I've implemented page lock
support in the MI code and have only moved vm_page's hold_count
out from under page queue mutex to page lock. This changes
pmap_extract_and_hold on all pmaps.
Supported by: Bitgravity Inc.
Discussed with: alc, jeffr, and kib
In the end, it does help fixing /dev/io usage from multithreaded
processes.
- On i386 and amd64 the old behaviour is kept but multithreaded
processes must use the new interface in order to work well.
- Support for the other architectures is greatly improved, where
necessary, by the necessity to define very small things now.
Manpage update will happen shortly.
Sponsored by: Sandvine Incorporated
PR: threads/116181
Reviewed by: emaste, marcel
MFC after: 3 weeks
domain clock, 8 programmable PMC.
- Westmere based CPU (Xeon 5600, Corei7 980X) support.
- New man pages with events list for core and uncore.
- Updated Corei7 events with Intel 253669-033US December 2009 doc.
There is some removed events in the documentation, they have been
kept in the code but documented in the man page as obsolete.
- Offcore response events can be setup with rsp token.
Sponsored by: NETASQ
AMD Family 10h Erratum 383, to i386.
Enable machine check exceptions by default, just like r204913 for amd64.
Enable superpage promotion only if the processor actually supports large
pages, i.e., PG_PS.
MFC after: 2 weeks
for parsing model-specific and other fields in machine check events
including the global machine check capabilities and status registers,
CPU identification, and the FreeBSD CPU ID.
- Report these added fields in the console log of a machine check so that
a record structure can be reconstituted from the console messages.
- Parse new architectural errors including memory controller errors.
MFC after: 1 week
correctly initialized and just then assign to softclock/profclock.
Right now, some atrtc seems reporting strange diagnostic error* making the
current pattern bogus.
In order to do that cleanly, lapic_setup_clock(), on both ia32 and amd64,
now accepts as arguments the desired sources to handle, and returns the
actual ones (LAPIC_CLOCK_NONE is forbidden because otherwise there is no
meaning in calling such function).
This allows to bring out into commont x86 code the handling part for
machdep.lapic_allclocks tunable, which is retained.
Sponsored by: Sandvine Incorporated
Tested by: yongari, Richard Todd
<rmtodd at ichotolot dot servalan dot com>
MFC: 3 weeks
X-MFC: r202387, 204309
LAPIC may lead to aliasing for softclock and profclock because frequencies
are sized in order to fit mainly hardclock.
atrtc used to take care of the softclock and profclock and it does still
do, if the LAPIC can't handle the clocks properly.
Revert the change when the LAPIC started taking charge of all three of
them and let atrtc handle softclock and profclock if not explicitly
requested. Such request can be made setting != 0 the new tunable
machdep.lapic_allclocks or if the new device ATPIC is not present
within the i386 kernel config (atrtc is linked to atpic presence).
Diagnosed by: Sandvine Incorporated
Reviewed by: jhb, emaste
Sponsored by: Sandvine Incorporated
MFC: 3 weeks
I/O port access is implemented on Itanium by reading and writing to a
special region in memory. To hide details and avoid misaligned memory
accesses, a process did I/O port reads and writes by making a MD system
call. There's one fatal problem with this approach: unprivileged access
was not being prevented. /dev/io serves that purpose on amd64/i386, so
employ it on ia64 as well. Use an ioctl for doing the actual I/O and
remove the sysarch(2) interface.
Backward compatibility is not being considered. The sysarch(2) approach
was added to support X11, but support for FreeBSD/ia64 was never fully
implemented in X11. Thus, nothing gets broken that didn't need more work
to begin with.
MFC after: 1 week
sys/vmmeter.h: warning: shadowed declaration is here
machine/cpufunc.h: In function 'insw':
machine/cpufunc.h: warning: declaration of 'cnt' shadows a global declaration
..snip..
- directly print mca information in case we fail to allocate memory
for a record
- include bank number into mca record
- print raw mca status value for extended information
Reviewed by: jhb
MFC after: 10 days
handlers. This is primarily intended as a way to allow devices that use
multiple interrupts (e.g. MSI) to meaningfully distinguish the various
interrupt handlers.
- Add a new BUS_DESCRIBE_INTR() method to the bus interface to associate
a description with an active interrupt handler setup by BUS_SETUP_INTR.
It has a default method (bus_generic_describe_intr()) which simply passes
the request up to the parent device.
- Add a bus_describe_intr() wrapper around BUS_DESCRIBE_INTR() that supports
printf(9) style formatting using var args.
- Reserve MAXCOMLEN bytes in the intr_handler structure to hold the name of
an interrupt handler and copy the name passed to intr_event_add_handler()
into that buffer instead of just saving the pointer to the name.
- Add a new intr_event_describe_handler() which appends a description string
to an interrupt handler's name.
- Implement support for interrupt descriptions on amd64 and i386 by having
the nexus(4) driver supply a custom bus_describe_intr method that invokes
a new intr_describe() MD routine which in turn looks up the associated
interrupt event and invokes intr_event_describe_handler().
Requested by: many
Reviewed by: scottl
MFC after: 2 weeks
by looking at the bases used for non-relocatable executables by gnu ld(1),
and adjusting it slightly.
Discussed with: bz
Reviewed by: kan
Tested by: bz (i386, amd64), bsam (linux)
MFC after: some time
specify their own version of atomic_cmpset_* which could have been
different than the membar version.
Right now, however, FreeBSD is bound mostly to GCC-like compilers and
it is desired to add new support and compat shim mostly when there is
a real necessity, in order to avoid too much compatibility bloats.
In this optic, bring back atomic_cmpset_{acq, rel}_* to be the same as
atomic_cmpset_* and unwind the atomic_cmpset_barr_* introduction.
Requested by: jhb
Reviewed by: jhb
Tested by: Giovanni Trematerra <giovanni dot trematerra at
gmail dot com>
not defined through macros or similar) in order to be later compiled in
the kernel and offer this way the support for modules (and
compatibility among the UP case and SMP case).
Fix this for the newly introduced atomic_cmpset_barr_* cases by defining
and specifying a template. Note that the new DEFINE_CMPSET_GEN()
template save more typing on amd64 than the current code. [1]
- Fix the style for memory barriers on amd64.
[1] Reported by: Paul B. Mahol <onemda at gmail dot com>
memory barriers should also ensure that the compiler doesn't reorder paths
where they are used. GCC, however, does that aggressively, even in
presence of volatile operands. The most reliable way GCC offers for avoid
instructions reordering is clobbering "memory" even if that is
theoretically an heavy-weight operation, flushing the content of all
the registers and forcing reload of them (We could rely, however, on
gcc DTRT by just understanding the purpose as this is a well-known
pattern for many modern operating-systems).
Not all our memory barriers, right now, clobber memory for GCC-like
compilers. The most notable cases are IA32 and amd64 where the memory
barrier are treacted the same as normal atomic instructions.
Fix this by offering the possibility to implement atomic instructions
with memory barriers separately from the normal version and implement
the GCC-like specific one using memory clobbering.
Thanks to Chris Lattner (@apple) for his discussion on llvm specifics.
Reported by: jhb
Reviewed by: jhb
Tested by: rdivacky, Giovanni Trematerra
<giovanni dot trematerra at gmail dot com>