with flags bitfield and set BI_CAN_EXEC_DYN flag for all brands that usually
allow executing elf dynamic binaries (aka shared libraries). When it is
requested to execute ET_DYN elf image check if this flag is on after we
know the elf brand allowing execution if so.
PR: kern/87615
Submitted by: Marcin Koziej <creep@desk.pl>
which existed to cleanup the linux_osname mutex. Now that MTX_SYSINIT()
has grown a SYSUNINIT to destroy mutexes on unload, the extra destroy here
was redundant and resulted in panics in debug kernels.
MFC after: 1 week
Reported by: Goran Gajic ggajic at afrodita dot rcub dot bg dot ac dot yu
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
validation error in procfs/linprocfs that can be exploited by local
users to cause a kernel panic. All versions of FreeBSD with the patch
referenced in SA-04:17.procfs have this bug, but versions without that
patch have a more serious bug instead. This problem only affects
systems on which procfs or linprocfs is mounted.
Found by: Coverity Prevent analysis tool
Security: Local DOS
pointers in argv and envv in userland and use that together with
kern_execve() and exec_free_args() to implement linux_execve() for the
amd64/linux32 ABI without using the stackgap.
- Implement linux_nanosleep() using the recently added kern_nanosleep().
- Use linux_emul_convpath() instead of linux_emul_find() in
exec_linux_imgact_try().
Tested by: cokane
Silence on: amd64
copies arguments into the kernel space and one that operates
completely in the kernel space;
o use kernel-only version of execve(2) to kill another stackgap in
linuxlator/i386.
Obtained from: DragonFlyBSD (partially)
MFC after: 2 weeks
with the COMPAT_LINUX32 option. This is largely based on the i386 MD Linux
emulations bits, but also builds on the 32-bit FreeBSD and generic IA-32
binary emulation work.
Some of this is still a little rough around the edges, and will need to be
revisited before 32-bit and 64-bit Linux emulation support can coexist in
the same kernel.