Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
No functional change intended.
* Migrate the rx_params stuff out from ieee80211_freebsd.h where it doesn't belong -
this isn't freebsd specific anymore.
* Don't use a hard-coded number of chains in the ioctl header; now we can shuffle
MAX_CHAINS around so it can be used in the right spot.
* Extend the signal/noisefloor levels in the mimo stats struct to userland to include
the signal and noisefloor levels for each 20MHz slice of a 160MHz channel.
* Bump the number of EVM pilots in preparation for 4x4 and 160MHz channels.
Tested:
* ath(4), STA mode
* iwn(4), STA mode
* local ath10k port, STA mode
TODO:
* 11ax chips will come with 5GHz 8x8 hardware for lots of MU-MIMO - I'll re-bump it
at that point.
Note:
* This breaks the driver and ifconfig ABI; please recompile the kernel,
ifconfig and wpa_supplicant/hostapd.
I'm teaching my ath10k port to communicate up the per-rate / channel width
information I get from the firmware.
The HT40 flag field should just be retired and instead moved to use the
PHY bandwidth field.
There are a variety of more interesting RX statistics that we should
keep track of but we don't. This is a starting point for adding more
information.
Specifically:
* now the RX rate information and some of the packet status is
passed up;
* The 32 bit or 64 bit TSF is passed up;
* the PHY mode is passed up;
* the "I'm decap'ed AMSDU!" state is passed up;
* number of RX chains is bumped to 4.
This is all mostly a placeholder for getting the data into the RX status
before we pass it up to net80211 - unfortunately we don't yet enforce
that drivers provide it, nor do we pass the provided info back up the
stack so anyone can use the data.
We're going to need to use some of this data moving forward.
Notably, now that some hardware can do AMSDU decap for us (the intel iwm
driver can do it when we flip it on; the ath10k port I'm doing does
it for us) then we need to pass it up through the stack so the duplicate
RX sequence numbers and crypto/IV details don't cause the packet to
be dropped and/or counted against a replay counter.
It's also the beginning of being able to do more interesting node
accounting in net80211. Specifically, once drivers start populating
per-packet rate information, AMPDU information, timestamps, etc,
we can start providing histograms of rate-versus-RSSI, account
for receive time spent per node and other such interesting things.
(Note: I'm also hoping to include ranging and RTT information for
future chipset support; and it's likely going to include it in
this kind of fashion.)
Add new lock for stageq (part of ieee80211_superg structure) and
ni_tx_superg (part of ieee80211_node structure);
drop com_lock protection where it is used to protect them.
While here, drop duplicate OPACKETS counter incrementation.
ni_tx_ampdu is not protected with it (however, it is also used without
locking in other places; probably, it requires some other solution
to be thread-safe).
Tested with RTL8188CUS (AP) and RTL8188EU (STA).
NOTE: Since this change breaks KBI, all wireless drivers need to be
recompiled.
Reviewed by: adrian
Approved by: re (gjb)
Differential Revision: https://reviews.freebsd.org/D6958
Drop scan generation number and node table scan lock - the only place
where ni_scangen is checked is in ieee80211_timeout_stations() (and it
is used to prevent duplicate checking of the same node); node scan lock
protects only this variable + node table scan generation number.
This will fix (at least) next LOR (hostap mode):
lock order reversal:
1st 0xc175f84c urtwm0_scan_loc (urtwm0_scan_loc) @ /usr/src/sys/modules/wlan/../../net80211/ieee80211_node.c:2019
2nd 0xc175e018 urtwm0_com_lock (urtwm0_com_lock) @ /usr/src/sys/modules/wlan/../../net80211/ieee80211_node.c:2693
stack backtrace:
#0 0xa070d1c5 at witness_debugger+0x75
#1 0xa070d0f6 at witness_checkorder+0xd46
#2 0xa0694cce at __mtx_lock_flags+0x9e
#3 0xb03ad9ef at ieee80211_node_leave+0x12f
#4 0xb03afd13 at ieee80211_timeout_stations+0x483
#5 0xb03aa1c2 at ieee80211_node_timeout+0x42
#6 0xa06c6fa1 at softclock_call_cc+0x1e1
#7 0xa06c7518 at softclock+0xc8
#8 0xa06789ae at intr_event_execute_handlers+0x8e
#9 0xa0678fa0 at ithread_loop+0x90
#10 0xa0675fbe at fork_exit+0x7e
#11 0xa08af910 at fork_trampoline+0x8
In addition to the above:
* switch to ieee80211_iterate_nodes();
* do not assert that node table lock is held, while calling node_age();
that's not really needed (there are no resources, which can be protected
by this lock) + this fixes LOR/deadlock between ieee80211_timeout_stations()
and ieee80211_set_tim() (easy to reproduce in HOSTAP mode while
sending something to an STA with enabled power management).
Tested:
* (avos) urtwn0, hostap mode
* (adrian) AR9380, STA mode
* (adrian) AR9380, AR9331, AR9580, hostap mode
Notes:
* This changes the net80211 internals, so you have to recompile all of it
and the wifi drivers.
Submitted by: avos
Approved by: re (delphij)
Differential Revision: https://reviews.freebsd.org/D6833
It turns out that these will clash very annoyingly with the linux
macros in the linuxkpi layer, so let the wookie^Wlinux win.
The only user that I can find is ath(4), so fix it there too.
we're assuming hz=1000 and not gracefully handling when it isn't.
The math involved will return 0 for hz < 1000, which it is on some
platforms and on DragonflyBSD.
This doesn't fix it, it:
* converts one manual use over to use the macro, and
* comments where it needs some thought/fixing.
I'll think about this a bit more before fixing it.
Submitted by: imre@vdsz.com
net80211 receive path. This allows drivers (notably USB right now, but
anything/everything!) to optionally defer bulk RX of 802.11 frames until
/outside/ of the driver lock(s), rather than doing:
UNLOCK(sc);
ieee80211_input*()
LOCK(sc);
.. which is really stupid.
The existing API is maintaned - if ieee80211_input() / ieee80211_input_all()
is called then the RSSI/NF values are used. If the MIMO versions are called
with a given rx status pointer then it's used. Else, it'll use whatever
is in the RX mbuf tag.
802.11 mbufs.
The raw transmit path currently doesn't make it easy to queue
these frames:
* there's no node reference stored in the mbuf, like for the normal
path, and
* the bpf supplied raw transmit parameters (rate, rts/cts, etc)
are passed in as an argument, not as an mbuf tag.
In order to support driver queuing of these frames, we need to
be able to put the above into the mbuf before the driver gets it,
so the driver /can/ put it into a queue if needed.
Use an mbuf tag and for now just verbatim copy the bpf parameters
into it. Later on it may grow to include more options but this
will do for now.
Why would you want to queue raw frames? Well, in the case of
iwn(4), we can't send the firmware frames to transmit before
we hear a beacon - the firmware will consider passive channels
as unavailable until it hears a beacon. The firmware "passive"
channel state is cleared upon each RXON command, which is sent to
update association status. So, when we attempt association and
authorisation, the RXON command causes the firmware to clear out
what it's already seen, and so we have to wait for a beacon before
we can transmit.
Before people get overly excited - this alone doesn't "fix" 5GHz
operation - it just makes it (more) possible.
The aim here is to convert all the drivers over to use a raw_xmit()
API that doesn't include the node and params - instead they'd get
those from the mbuf. Then raw_xmit() becomes just a side-channel
version of the normal transmit path for management traffic.
MFC after: 2 weeks
Sponsored by: Norse Corp, Inc.
DragonflyBSD uses the FreeBSD wireless stack and drivers. Their malloc()
API is named differently, so they don't have userland/kernel symbol
clashes like we do (think libuinet.)
So, to make it easier for them and to port to other BSDs/other operating
systems, start hiding the malloc specific bits behind defines in
ieee80211_freebsd.h.
DragonflyBSD can now put these portability defines in their local
ieee80211_dragonflybsd.h.
This should be a great big no-op for everyone running wifi.
TODO:
* kill M_WAITOK - some platforms just don't want you to use it
* .. and/or handle it returning NULL rather than waiting forever.
* MALLOC_DEFINE() ?
* Migrate the well-known malloc names (eg M_TEMP) to net80211
namespace defines.
together.
Add M_FLAG_PRINTF for use with printf(9) %b indentifier.
Use the generic mbuf flags print names in the net80211 code and adjust
the protocol specific bits for their new positions.
Change SCTP M_PROTO mapping from 5 to 1 to fit within the 16bit field
they use internally to store some additional information.
Discussed with: trociny, glebius
M_LASTFRAG flags to protocol specific flags.
Remove the now unused M_FRAG, M_FIRSTFRAG and M_LASTFRAG mbuf flags.
Discussed with: trociny, glebius, adrian
upper layer(s).
This eliminates the if_snd queue from net80211. Yay!
This unfortunately has a few side effects:
* It breaks ALTQ to net80211 for now - sorry everyone, but fixing
parallelism and eliminating the if_snd queue is more important
than supporting this broken traffic scheduling model. :-)
* There's no VAP and IC flush methods just yet - I think I'll add
some NULL methods for now just as placeholders.
* It reduces throughput a little because now net80211 will drop packets
rather than buffer them if the driver doesn't do its own buffering.
This will be addressed in the future as I implement per-node software
queues.
Tested:
* ath(4) and iwn(4) in STA operation
This patchset implements a new TX lock, covering both the per-VAP (and
thus per-node) TX locking and the serialisation through to the underlying
physical device.
This implements the hard requirement that frames to the underlying physical
device are scheduled to the underlying device in the same order that they
are processed at the VAP layer. This includes adding extra encapsulation
state (such as sequence numbers and CCMP IV numbers.) Any order mismatch
here will result in dropped packets at the receiver.
There are multiple transmit contexts from the upper protocol layers as well
as the "raw" interface via the management and BPF transmit paths.
All of these need to be correctly serialised or bad behaviour will result
under load.
The specifics:
* add a new TX IC lock - it will eventually just be used for serialisation
to the underlying physical device but for now it's used for both the
VAP encapsulation/serialisation and the physical device dispatch.
This lock is specifically non-recursive.
* Methodize the parent transmit, vap transmit and ic_raw_xmit function
pointers; use lock assertions in the parent/vap transmit routines.
* Add a lock assertion in ieee80211_encap() - the TX lock must be held
here to guarantee sensible behaviour.
* Refactor out the packet sending code from ieee80211_start() - now
ieee80211_start() is just a loop over the ifnet queue and it dispatches
each VAP packet send through ieee80211_start_pkt().
Yes, I will likely rename ieee80211_start_pkt() to something that
better reflects its status as a VAP packet transmit path. More on
that later.
* Add locking around the management and BAR TX sending - to ensure that
encapsulation and TX are done hand-in-hand.
* Add locking in the mesh code - again, to ensure that encapsulation
and mesh transmit are done hand-in-hand.
* Add locking around the power save queue and ageq handling, when
dispatching to the parent interface.
* Add locking around the WDS handoff.
* Add a note in the mesh dispatch code that the TX path needs to be
re-thought-out - right now it's doing a direct parent device transmit
rather than going via the vap layer. It may "work", but it's likely
incorrect (as it bypasses any possible per-node power save and
aggregation handling.)
Why not a per-VAP or per-node lock?
Because in order to ensure per-VAP ordering, we'd have to hold the
VAP lock across parent->if_transmit(). There are a few problems
with this:
* There's some state being setup during each driver transmit - specifically,
the encryption encap / CCMP IV setup. That should eventually be dragged
back into the encapsulation phase but for now it lives in the driver TX path.
This should be locked.
* Two drivers (ath, iwn) re-use the node->ni_txseqs array in order to
allocate sequence numbers when doing transmit aggregation. This should
also be locked.
* Drivers may have multiple frames queued already - so when one calls
if_transmit(), it may end up dispatching multiple frames for different
VAPs/nodes, each needing a different lock when handling that particular
end destination.
So to be "correct" locking-wise, we'd end up needing to grab a VAP or
node lock inside the driver TX path when setting up crypto / AMPDU sequence
numbers, and we may already _have_ a TX lock held - mostly for the same
destination vap/node, but sometimes it'll be for others. That could lead
to LORs and thus deadlocks.
So for now, I'm sticking with an IC TX lock. It has the advantage of
papering over the above and it also has the added advantage that I can
assert that it's being held when doing a parent device transmit.
I'll look at splitting the locks out a bit more later on.
General outstanding net80211 TX path issues / TODO:
* Look into separating out the VAP serialisation and the IC handoff.
It's going to be tricky as parent->if_transmit() doesn't give me the
opportunity to split queuing from driver dispatch. See above.
* Work with monthadar to fix up the mesh transmit path so it doesn't go via
the parent interface when retransmitting frames.
* Push the encryption handling back into the driver, if it's at all
architectually sane to do so. I know it's possible - it's what mac80211
in Linux does.
* Make ieee80211_raw_xmit() queue a frame into VAP or parent queue rather
than doing a short-cut direct into the driver. There are QoS issues
here - you do want your management frames to be encapsulated and pushed
onto the stack sooner than the (large, bursty) amount of data frames
that are queued. But there has to be a saner way to do this.
* Fragments are still broken - drivers need to be upgraded to an if_transmit()
implementation and then fragmentation handling needs to be properly fixed.
Tested:
* STA - AR5416, AR9280, Intel 5300 abgn wifi
* Hostap - AR5416, AR9160, AR9280
* Mesh - some testing by monthadar@, more to come.
This framework allows drivers to abstract the rate control algorithm and
just feed the framework with the usable parameters. The rate control
framework will now deal with passing the parameters to the selected
algorithm. Right now we have AMRR (the default) and RSSADAPT but there's
no way to select one with ifconfig, yet.
The objective is to have more rate control algorithms in the net80211
stack so all drivers[0] can use it. Ideally, we'll have the well-known
sample rate control algorithm in the net80211 at some point so all
drivers can use it (not just ath).
[0] all drivers that do rate control in software, that is.
Reviewed by: bschmidt, thompsa, weyongo
MFC after: 1 months
net80211 wireless stack. This work is based on the March 2009 D3.0 draft
standard. This standard is expected to become final next year.
This includes two main net80211 modules, ieee80211_mesh.c
which deals with peer link management, link metric calculation,
routing table control and mesh configuration and ieee80211_hwmp.c
which deals with the actually routing process on the mesh network.
HWMP is the mandatory routing protocol on by the mesh standard, but
others, such as RA-OLSR, can be implemented.
Authentication and encryption are not implemented.
There are several scripts under tools/tools/net80211/scripts that can be
used to test different mesh network topologies and they also teach you
how to setup a mesh vap (for the impatient: ifconfig wlan0 create
wlandev ... wlanmode mesh).
A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled
by default on GENERIC kernels for i386, amd64, sparc64 and pc98.
Drivers that support mesh networks right now are: ath, ral and mwl.
More information at: http://wiki.freebsd.org/WifiMesh
Please note that this work is experimental. Also, please note that
bridging a mesh vap with another network interface is not yet supported.
Many thanks to the FreeBSD Foundation for sponsoring this project and to
Sam Leffler for his support.
Also, I would like to thank Gateworks Corporation for sending me a
Cambria board which was used during the development of this project.
Reviewed by: sam
Approved by: re (kensmith)
Obtained from: projects/mesh11s
long-term work before they can be serviced. Packets are tagged and
assigned an age (in seconds) at the point they are added to the
queue. If a packet is not retrieved before it's age expires it is
reclaimed. Tagging can take two forms: a reference to an ieee80211_node
(as happens in the tx path) or an opaque token in cases where there
is no reference or the node structure is not stable (i.e. it's going
to be destroyed).
o add ic_stageq to replace the per-node wds staging queue used for
dynamic wds
o add ieee80211_mac_hash for building ageq tokens; this computes a
32-bit hash from an 802.11 mac address (copied from the bridge)
o while here fix a stray ';' noticed in IEEE80211_PSQ_INIT
Reviewed by: rpaulo
Approved by: re (kensmith)
sleepable context for net80211 driver callbacks. This removes the need for USB
and firmware based drivers to roll their own code to defer the chip programming
for state changes, scan requests, channel changes and mcast/promisc updates.
When a driver callback completes the hardware state is now guaranteed to have
been updated and is in sync with net80211 layer.
This nukes around 1300 lines of code from the wireless device drivers making
them more readable and less race prone.
The net80211 layer has been updated as follows
- all state/channel changes are serialised on the taskqueue.
- ieee80211_new_state() always queues and can now be called from any context
- scanning runs from a single taskq function and executes to completion. driver
callbacks are synchronous so the channel, phy mode and rx filters are
guaranteed to be set in hardware before probe request frames are
transmitted.
Help and contributions from Sam Leffler.
Reviewed by: sam
used for s/w retransmit schemes that want to access this information
w/o the overhead of decoding the raw frame. Note this also allows
drivers to record this information w/o writing the frame when the seq#
is obtained through an out-of-band mechanism (e.g. when a h/w assigned
seq# is reported in a descriptor on tx done notification).
Reviewed by: sephe, avatar
to be encapsulated before dispatching to the driver
o eliminate M_WDS now that we call ieee80211_encap directly and can supply
the wds vap to indicate a 4-address frame should be created
When copying big structures, LLVM generates calls to memmove(), because
it may not be able to figure out whether structures overlap. This caused
linker errors to occur. memmove() is now implemented using bcopy().
Ideally it would be the other way around, but that can be solved in the
future. On ARM we don't do add anything, because it already has
memmove().
Discussed on: arch@
Reviewed by: rdivacky
the net80211 layer has complete control over the handling of mgt frames
(in particular, the ac, tx rate, and retry count); this also allows us
to purge the M_LINK0 flag that was attached to mbufs to mark them as
needing encryption for shared key auth
o change ieee80211_send_setup to take a tid parameter so it can be used
to setup QoS frames
For receive:
o explicitly tag rx frames w/ M_AMPDU instead of passing frames through
the reorder processing according to the node having HT and the frame
being QoS data
o relax ieee80211_ampdu_reorder asserts to allow any frame to be passed
in, unsuitable frames are returned to the caller for normal processing;
this permits drivers that cannot inspect the PLCP to mark all data
frames as potential ampdu candidates with only a small penalty
o add M_AMPDU_MPDU to identify frames resubmitted from the reorder q
For transmit:
o tag aggregation candidates with M_AMPDU_MPDU
o fix the QoS ack policy set in ampdu subframes; we only support immediate
BA streams which should be marked for "normal ack" to get implicit block
ack behaviour; interestingly certain vendor parts BA'd frames with the
11e BA ack policy set
o do not assign a sequence # to aggregation candidates; this must be done
when frames are submitted for transmit (NB: this can/will be handled
better when aggregation is pulled up to net80211)