Commit Graph

37 Commits

Author SHA1 Message Date
royger
c1bb2e3246 Update Xen headers from 4.2 to 4.6
Pull the latest headers for Xen which allow us to add support for ARM and
use new features in FreeBSD.

This is a verbatim copy of the xen/include/public so every headers which
don't exits anymore in the Xen repositories have been dropped.

Note the interface version hasn't been bumped, it will be done in a
follow-up. Although, it requires fix in the code to get it compiled:

 - sys/xen/xen_intr.h: evtchn_port_t is already defined in the headers so
   drop it.

 - {amd64,i386}/include/intr_machdep.h: NR_EVENT_CHANNELS now depends on
   xen/interface/event_channel.h, so include it.

 - {amd64,i386}/{amd64,i386}/support.S: It's not neccessary to include
   machine/intr_machdep.h. This is also fixing build compilation with the
   new headers.

 - dev/xen/blkfront/blkfront.c: The typedef for blkif_request_segmenthas
   been dropped. So directly use struct blkif_request_segment

Finally, modify xen/interface/xen-compat.h to throw a preprocessing error if
__XEN_INTERFACE_VERSION__ is not set. This is allow us to catch any file
where xen/xen-os.h is not correctly included.

Submitted by:		Julien Grall <julien.grall@citrix.com>
Reviewed by:		royger
Differential Revision:	https://reviews.freebsd.org/D3805
Sponsored by:		Citrix Systems R&D
2015-10-06 11:29:44 +00:00
jhb
9c4c8b62fb Remove support for Xen PV domU kernels. Support for HVM domU kernels
remains.  Xen is planning to phase out support for PV upstream since it
is harder to maintain and has more overhead.  Modern x86 CPUs include
virtualization extensions that support HVM guests instead of PV guests.
In addition, the PV code was i386 only and not as well maintained recently
as the HVM code.
- Remove the i386-only NATIVE option that was used to disable certain
  components for PV kernels.  These components are now standard as they
  are on amd64.
- Remove !XENHVM bits from PV drivers.
- Remove various shims required for XEN (e.g. PT_UPDATES_FLUSH, LOAD_CR3,
  etc.)
- Remove duplicate copy of <xen/features.h>.
- Remove unused, i386-only xenstored.h.

Differential Revision:	https://reviews.freebsd.org/D2362
Reviewed by:	royger
Tested by:	royger (i386/amd64 HVM domU and amd64 PVH dom0)
Relnotes:	yes
2015-04-30 15:48:48 +00:00
kib
b178649de8 Use VT-d interrupt remapping block (IR) to perform FSB messages
translation.  In particular, despite IO-APICs only take 8bit apic id,
IR translation structures accept 32bit APIC Id, which allows x2APIC
mode to function properly.  Extend msi_cpu of struct msi_intrsrc and
io_cpu of ioapic_intsrc to full int from one byte.

KPI of IR is isolated into the x86/iommu/iommu_intrmap.h, to avoid
bringing all dmar headers into interrupt code. The non-PCI(e) devices
which generate message interrupts on FSB require special handling. The
HPET FSB interrupts are remapped, while DMAR interrupts are not.

For each msi and ioapic interrupt source, the iommu cookie is added,
which is in fact index of the IRE (interrupt remap entry) in the IR
table. Cookie is made at the source allocation time, and then used at
the map time to fill both IRE and device registers. The MSI
address/data registers and IO-APIC redirection registers are
programmed with the special values which are recognized by IR and used
to restore the IRE index, to find proper delivery mode and target.
Map all MSI interrupts in the block when msi_map() is called.

Since an interrupt source setup and dismantle code are done in the
non-sleepable context, flushing interrupt entries cache in the IR
hardware, which is done async and ideally waits for the interrupt,
requires busy-wait for queue to drain.  The dmar_qi_wait_for_seq() is
modified to take a boolean argument requesting busy-wait for the
written sequence number instead of waiting for interrupt.

Some interrupts are configured before IR is initialized, e.g. ACPI
SCI.  Add intr_reprogram() function to reprogram all already
configured interrupts, and call it immediately before an IR unit is
enabled.  There is still a small window after the IO-APIC redirection
entry is reprogrammed with cookie but before the unit is enabled, but
to fix this properly, IR must be started much earlier.

Add workarounds for 5500 and X58 northbridges, some revisions of which
have severe flaws in handling IR.  Use the same identification methods
as employed by Linux.

Review:	https://reviews.freebsd.org/D1892
Reviewed by:	neel
Discussed with:	jhb
Tested by:	glebius, pho (previous versions)
Sponsored by:	The FreeBSD Foundation
MFC after:	3 weeks
2015-03-19 13:57:47 +00:00
gibbs
a9c07a6f67 Add support for suspend/resume/migration operations when running as a
Xen PVHVM guest.

Submitted by:	Roger Pau Monné
Sponsored by:	Citrix Systems R&D
Reviewed by:	gibbs
Approved by:	re (blanket Xen)
MFC after:	2 weeks

sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
	- Make sure that are no MMU related IPIs pending on migration.
	- Reset pending IPI_BITMAP on resume.
	- Init vcpu_info on resume.

sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
sys/x86/acpica/acpi_wakeup.c:
sys/x86/x86/intr_machdep.c:
sys/x86/isa/atpic.c:
sys/x86/x86/io_apic.c:
sys/x86/x86/local_apic.c:
	- Add a "suspend_cancelled" parameter to pic_resume().  For the
	  Xen PIC, restoration of interrupt services differs between
	  the aborted suspend and normal resume cases, so we must provide
	  this information.

sys/dev/acpica/acpi_timer.c:
sys/dev/xen/timer/timer.c:
sys/timetc.h:
	- Don't swap out "suspend safe" timers across a suspend/resume
	  cycle.  This includes the Xen PV and ACPI timers.

sys/dev/xen/control/control.c:
	- Perform proper suspend/resume process for PVHVM:
		- Suspend all APs before going into suspension, this allows us
		  to reset the vcpu_info on resume for each AP.
		- Reset shared info page and callback on resume.

sys/dev/xen/timer/timer.c:
	- Implement suspend/resume support for the PV timer. Since FreeBSD
	  doesn't perform a per-cpu resume of the timer, we need to call
	  smp_rendezvous in order to correctly resume the timer on each CPU.

sys/dev/xen/xenpci/xenpci.c:
	- Don't reset the PCI interrupt on each suspend/resume.

sys/kern/subr_smp.c:
	- When suspending a PVHVM domain make sure there are no MMU IPIs
	  in-flight, or we will get a lockup on resume due to the fact that
	  pending event channels are not carried over on migration.
	- Implement a generic version of restart_cpus that can be used by
	  suspended and stopped cpus.

sys/x86/xen/hvm.c:
	- Implement resume support for the hypercall page and shared info.
	- Clear vcpu_info so it can be reset by APs when resuming from
	  suspension.

sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/x86/xen/xen_intr.c:
	- Support UP kernel configurations.

sys/x86/xen/xen_intr.c:
	- Properly rebind per-cpus VIRQs and IPIs on resume.
2013-09-20 05:06:03 +00:00
gibbs
fcdbf70fd9 Implement vector callback for PVHVM and unify event channel implementations
Re-structure Xen HVM support so that:
	- Xen is detected and hypercalls can be performed very
	  early in system startup.
	- Xen interrupt services are implemented using FreeBSD's native
	  interrupt delivery infrastructure.
	- the Xen interrupt service implementation is shared between PV
	  and HVM guests.
	- Xen interrupt handlers can optionally use a filter handler
	  in order to avoid the overhead of dispatch to an interrupt
	  thread.
	- interrupt load can be distributed among all available CPUs.
	- the overhead of accessing the emulated local and I/O apics
	  on HVM is removed for event channel port events.
	- a similar optimization can eventually, and fairly easily,
	  be used to optimize MSI.

Early Xen detection, HVM refactoring, PVHVM interrupt infrastructure,
and misc Xen cleanups:

Sponsored by: Spectra Logic Corporation

Unification of PV & HVM interrupt infrastructure, bug fixes,
and misc Xen cleanups:

Submitted by: Roger Pau Monné
Sponsored by: Citrix Systems R&D

sys/x86/x86/local_apic.c:
sys/amd64/include/apicvar.h:
sys/i386/include/apicvar.h:
sys/amd64/amd64/apic_vector.S:
sys/i386/i386/apic_vector.s:
sys/amd64/amd64/machdep.c:
sys/i386/i386/machdep.c:
sys/i386/xen/exception.s:
sys/x86/include/segments.h:
	Reserve IDT vector 0x93 for the Xen event channel upcall
	interrupt handler.  On Hypervisors that support the direct
	vector callback feature, we can request that this vector be
	called directly by an injected HVM interrupt event, instead
	of a simulated PCI interrupt on the Xen platform PCI device.
	This avoids all of the overhead of dealing with the emulated
	I/O APIC and local APIC.  It also means that the Hypervisor
	can inject these events on any CPU, allowing upcalls for
	different ports to be handled in parallel.

sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
	Map Xen per-vcpu area during AP startup.

sys/amd64/include/intr_machdep.h:
sys/i386/include/intr_machdep.h:
	Increase the FreeBSD IRQ vector table to include space
	for event channel interrupt sources.

sys/amd64/include/pcpu.h:
sys/i386/include/pcpu.h:
	Remove Xen HVM per-cpu variable data.  These fields are now
	allocated via the dynamic per-cpu scheme.  See xen_intr.c
	for details.

sys/amd64/include/xen/hypercall.h:
sys/dev/xen/blkback/blkback.c:
sys/i386/include/xen/xenvar.h:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/xen/gnttab.c:
	Prefer FreeBSD primatives to Linux ones in Xen support code.

sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
sys/dev/xen/balloon/balloon.c:
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/console/xencons_ring.c:
sys/dev/xen/control/control.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/dev/xen/xenpci/xenpci.c:
sys/i386/i386/machdep.c:
sys/i386/include/pmap.h:
sys/i386/include/xen/xenfunc.h:
sys/i386/isa/npx.c:
sys/i386/xen/clock.c:
sys/i386/xen/mp_machdep.c:
sys/i386/xen/mptable.c:
sys/i386/xen/xen_clock_util.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/xen_rtc.c:
sys/xen/evtchn/evtchn_dev.c:
sys/xen/features.c:
sys/xen/gnttab.c:
sys/xen/gnttab.h:
sys/xen/hvm.h:
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbus_if.m:
sys/xen/xenbus/xenbusb_front.c:
sys/xen/xenbus/xenbusvar.h:
sys/xen/xenstore/xenstore.c:
sys/xen/xenstore/xenstore_dev.c:
sys/xen/xenstore/xenstorevar.h:
	Pull common Xen OS support functions/settings into xen/xen-os.h.

sys/amd64/include/xen/xen-os.h:
sys/i386/include/xen/xen-os.h:
sys/xen/xen-os.h:
	Remove constants, macros, and functions unused in FreeBSD's Xen
	support.

sys/xen/xen-os.h:
sys/i386/xen/xen_machdep.c:
sys/x86/xen/hvm.c:
	Introduce new functions xen_domain(), xen_pv_domain(), and
	xen_hvm_domain().  These are used in favor of #ifdefs so that
	FreeBSD can dynamically detect and adapt to the presence of
	a hypervisor.  The goal is to have an HVM optimized GENERIC,
	but more is necessary before this is possible.

sys/amd64/amd64/machdep.c:
sys/dev/xen/xenpci/xenpcivar.h:
sys/dev/xen/xenpci/xenpci.c:
sys/x86/xen/hvm.c:
sys/sys/kernel.h:
	Refactor magic ioport, Hypercall table and Hypervisor shared
	information page setup, and move it to a dedicated HVM support
	module.

	HVM mode initialization is now triggered during the
	SI_SUB_HYPERVISOR phase of system startup.  This currently
	occurs just after the kernel VM is fully setup which is
	just enough infrastructure to allow the hypercall table
	and shared info page to be properly mapped.

sys/xen/hvm.h:
sys/x86/xen/hvm.c:
	Add definitions and a method for configuring Hypervisor event
	delievery via a direct vector callback.

sys/amd64/include/xen/xen-os.h:
sys/x86/xen/hvm.c:

sys/conf/files:
sys/conf/files.amd64:
sys/conf/files.i386:
	Adjust kernel build to reflect the refactoring of early
	Xen startup code and Xen interrupt services.

sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
sys/dev/xen/control/control.c:
sys/dev/xen/evtchn/evtchn_dev.c:
sys/dev/xen/netback/netback.c:
sys/dev/xen/netfront/netfront.c:
sys/xen/xenstore/xenstore.c:
sys/xen/evtchn/evtchn_dev.c:
sys/dev/xen/console/console.c:
sys/dev/xen/console/xencons_ring.c
	Adjust drivers to use new xen_intr_*() API.

sys/dev/xen/blkback/blkback.c:
	Since blkback defers all event handling to a taskqueue,
	convert this task queue to a "fast" taskqueue, and schedule
	it via an interrupt filter.  This avoids an unnecessary
	ithread context switch.

sys/xen/xenstore/xenstore.c:
	The xenstore driver is MPSAFE.  Indicate as much when
	registering its interrupt handler.

sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbusvar.h:
	Remove unused event channel APIs.

sys/xen/evtchn.h:
	Remove all kernel Xen interrupt service API definitions
	from this file.  It is now only used for structure and
	ioctl definitions related to the event channel userland
	device driver.

	Update the definitions in this file to match those from
	NetBSD.  Implementing this interface will be necessary for
	Dom0 support.

sys/xen/evtchn/evtchnvar.h:
	Add a header file for implemenation internal APIs related
	to managing event channels event delivery.  This is used
	to allow, for example, the event channel userland device
	driver to access low-level routines that typical kernel
	consumers of event channel services should never access.

sys/xen/interface/event_channel.h:
sys/xen/xen_intr.h:
	Standardize on the evtchn_port_t type for referring to
	an event channel port id.  In order to prevent low-level
	event channel APIs from leaking to kernel consumers who
	should not have access to this data, the type is defined
	twice: Once in the Xen provided event_channel.h, and again
	in xen/xen_intr.h.  The double declaration is protected by
	__XEN_EVTCHN_PORT_DEFINED__ to ensure it is never declared
	twice within a given compilation unit.

sys/xen/xen_intr.h:
sys/xen/evtchn/evtchn.c:
sys/x86/xen/xen_intr.c:
sys/dev/xen/xenpci/evtchn.c:
sys/dev/xen/xenpci/xenpcivar.h:
	New implementation of Xen interrupt services.  This is
	similar in many respects to the i386 PV implementation with
	the exception that events for bound to event channel ports
	(i.e. not IPI, virtual IRQ, or physical IRQ) are further
	optimized to avoid mask/unmask operations that aren't
	necessary for these edge triggered events.

	Stubs exist for supporting physical IRQ binding, but will
	need additional work before this implementation can be
	fully shared between PV and HVM.

sys/amd64/amd64/mp_machdep.c:
sys/i386/i386/mp_machdep.c:
sys/i386/xen/mp_machdep.c
sys/x86/xen/hvm.c:
	Add support for placing vcpu_info into an arbritary memory
	page instead of using HYPERVISOR_shared_info->vcpu_info.
	This allows the creation of domains with more than 32 vcpus.

sys/i386/i386/machdep.c:
sys/i386/xen/clock.c:
sys/i386/xen/xen_machdep.c:
sys/i386/xen/exception.s:
	Add support for new event channle implementation.
2013-08-29 19:52:18 +00:00
avg
09a43450b8 x86 suspend/resume: suspend pics and pseudo-pics in reverse order
- change 'pics' from STAILQ to TAILQ
- ensure that Local APIC is always first in 'pics'

Reviewed by:	jhb
Tested by:	Sergey V. Dyatko <sergey.dyatko@gmail.com>,
		KAHO Toshikazu <kaho@elam.kais.kyoto-u.ac.jp>
MFC after:	12 days
2013-02-02 12:02:42 +00:00
attilio
3212891c92 Reverts r234074,234105,234564,234723,234989,235231-235232 and part of
r234247.
Use, instead, the static intializer introduced in r239923 for x86 and
sparc64 intr_cpus, unwinding the code to the initial version.

Reviewed by:	marius
2012-10-09 12:22:43 +00:00
attilio
b8cdf306fd Revert part of r234723 by re-enabling the SMP protection for
intr_bind() on x86.
This has been requested by jhb and I strongly disagree with this,
but as long as he is the x86 and interrupt subsystem maintainer I will
follow his directives.

The disagreement cames from what we should really consider as a
public KPI. IMHO, if we really need a selection between the kernel
functions, we may need an explicit protection like _KERNEL_KPI, which
defines which subset of the kernel function might really be considered
as part of the KPI (for thirdy part modules) and which not.
As long as we don't have this mechanism I just consider any possible
function as usable by thirdy part code, thus intr_bind() included.

MFC after:	1 week
2012-05-03 21:44:01 +00:00
attilio
0b98e6d835 Clean up the intr* MD KPI from the SMP dependency, removing a cause of
discrepancy between modules and kernel, but deal with SMP differences
within the functions themselves.

As an added bonus this also helps in terms of code readability.

Requested by:	gibbs
Reviewed by:	jhb, marius
MFC after:	1 week
2012-04-26 20:24:25 +00:00
avg
3e4fba4c32 bump INTRCNT_COUNT values to reflect actual numbers of IPI counters
Maybe the numbers should be conditionalized on COUNT_IPIS

Reviewed by:	jhb
MFC after:	1 week
2012-04-13 07:15:40 +00:00
jhb
d6f48ea8cc Allow a native i386 kernel to be built with 'nodevice atpic'. Just as on
amd64, if 'device isa' is present quiesce the 8259A's during boot and
resume from suspend.

While here, be more selective on amd64 about which kernel configurations
need elcr.c.

MFC after:	2 weeks
2012-03-09 19:42:48 +00:00
jhb
45688ed39d Add a facility for associating optional descriptions with active interrupt
handlers.  This is primarily intended as a way to allow devices that use
multiple interrupts (e.g. MSI) to meaningfully distinguish the various
interrupt handlers.
- Add a new BUS_DESCRIBE_INTR() method to the bus interface to associate
  a description with an active interrupt handler setup by BUS_SETUP_INTR.
  It has a default method (bus_generic_describe_intr()) which simply passes
  the request up to the parent device.
- Add a bus_describe_intr() wrapper around BUS_DESCRIBE_INTR() that supports
  printf(9) style formatting using var args.
- Reserve MAXCOMLEN bytes in the intr_handler structure to hold the name of
  an interrupt handler and copy the name passed to intr_event_add_handler()
  into that buffer instead of just saving the pointer to the name.
- Add a new intr_event_describe_handler() which appends a description string
  to an interrupt handler's name.
- Implement support for interrupt descriptions on amd64 and i386 by having
  the nexus(4) driver supply a custom bus_describe_intr method that invokes
  a new intr_describe() MD routine which in turn looks up the associated
  interrupt event and invokes intr_event_describe_handler().

Requested by:	many
Reviewed by:	scottl
MFC after:	2 weeks
2009-10-15 14:54:35 +00:00
jhb
76256698a1 Improve the handling of cpuset with interrupts.
- For x86, change the interrupt source method to assign an interrupt source
  to a specific CPU to return an error value instead of void, thus allowing
  it to fail.
- If moving an interrupt to a CPU fails due to a lack of IDT vectors in the
  destination CPU, fail the request with ENOSPC rather than panicing.
- For MSI interrupts on x86 (but not MSI-X), only allow cpuset to be used
  on the first interrupt in a group.  Moving the first interrupt in a group
  moves the entire group.
- Use the icu_lock to protect intr_next_cpu() on x86 instead of the
  intr_table_lock to fix a LOR introduced in the last set of MSI changes.
- Add a new privilege PRIV_SCHED_CPUSET_INTR for using cpuset with
  interrupts.  Previously, binding an interrupt to a CPU only performed a
  privilege check if the interrupt had an interrupt thread.  Interrupts
  without a thread could be bound by non-root users as a result.
- If an interrupt event's assign_cpu method fails, then restore the original
  cpuset mask for the associated interrupt thread.

Approved by:	re (kib)
2009-07-01 17:20:07 +00:00
jhb
6d5618d67c Fix kernels compiled without SMP support. Make intr_next_cpu() available
for UP kernels but as a stub that always returns the single CPU's local
APIC ID.

Reported by:	kib
2009-06-25 20:35:46 +00:00
jhb
7f94b48606 - Restore the behavior of pre-allocating IDT vectors for MSI interrupts.
This is mostly important for the multiple MSI message case where the
  IDT vectors for the entire group need to be allocated together.  This
  also restores the assumptions made by the PCI bus code that it could
  invoke PCIB_MAP_MSI() once MSI vectors were allocated.
- To avoid whiplash with CPU assignments, change the way that CPUs are
  assigned to interrupt sources on activation.  Instead of assigning the
  CPU via pic_assign_cpu() before calling enable_intr(), allow the
  different interrupt source drivers to ask the MD interrupt code which
  CPU to use when they allocate an IDT vector.  I/O APIC interrupt pins
  do this in their pic_enable_intr() routines giving the same behavior as
  before.  MSI sources do it when the IDT vectors are allocated during
  msi_alloc() and msix_alloc().
- Change the intr_table_lock from an sx lock to a mutex.

Tested by:	rnoland
2009-06-25 18:13:46 +00:00
jeff
bfa45b3bb7 - Allocate apic vectors on a per-cpu basis. This allows us to allocate
more irqs as we have more cpus.  This is principally useful on systems
   with msi devices which may want many irqs per-cpu.

Discussed with:	jhb
Sponsored by:	Nokia
2009-01-29 09:22:56 +00:00
jhb
9c113163fb Add preliminary support for binding interrupts to CPUs:
- Add a new intr_event method ie_assign_cpu() that is invoked when the MI
  code wishes to bind an interrupt source to an individual CPU.  The MD
  code may reject the binding with an error.  If an assign_cpu function
  is not provided, then the kernel assumes the platform does not support
  binding interrupts to CPUs and fails all requests to do so.
- Bind ithreads to CPUs on their next execution loop once an interrupt
  event is bound to a CPU.  Only shared ithreads are bound.  We currently
  leave private ithreads for drivers using filters + ithreads in the
  INTR_FILTER case unbound.
- A new intr_event_bind() routine is used to bind an interrupt event to
  a CPU.
- Implement binding on amd64 and i386 by way of the existing pic_assign_cpu
  PIC method.
- For x86, provide a 'intr_bind(IRQ, cpu)' wrapper routine that looks up
  an interrupt source and binds its interrupt event to the specified CPU.
  MI code can currently (ab)use this by doing:

	intr_bind(rman_get_start(irq_res), cpu);

  however, I plan to add a truly MI interface (probably a bus_bind_intr(9))
  where the implementation in the x86 nexus(4) driver would end up calling
  intr_bind() internally.

Requested by:	kmacy, gallatin, jeff
Tested on:	{amd64, i386} x {regular, INTR_FILTER}
2008-03-14 19:41:48 +00:00
jhb
23cec608a6 Minor fixes and tweaks to the x86 interrupt code:
- Split the intr_table_lock into an sx lock used for most things, and a
  spin lock to protect intrcnt_index.  Originally I had this as a spin lock
  so interrupt code could use it to lookup sources.  However, we don't
  actually do that because it would add a lot of overhead to interrupts,
  and if we ever do support removing interrupt sources, we can use other
  means to safely do so w/o locking in the interrupt handling code.
- Replace is_enabled (boolean) with is_handlers (a count of handlers) to
  determine if a source is enabled or not.  This allows us to notice when
  a source is no longer in use.  When that happens, we now invoke a new
  PIC method (pic_disable_intr()) to inform the PIC driver that the
  source is no longer in use.  The I/O APIC driver frees the APIC IDT
  vector when this happens.  The MSI driver no longer needs to have a
  hack to clear is_enabled during msi_alloc() and msix_alloc() as a result
  of this change as well.
- Add an apic_disable_vector() to reset an IDT vector back to Xrsvd to
  complement apic_enable_vector() and use it in the I/O APIC and MSI code
  when freeing an IDT vector.
- Add a new nexus hook: nexus_add_irq() to ask the nexus driver to add an
  IRQ to its irq_rman.  The MSI code uses this when it creates new
  interrupt sources to let the nexus know about newly valid IRQs.
  Previously the msi_alloc() and msix_alloc() passed some extra stuff
  back to the nexus methods which then added the IRQs.  This approach is
  a bit cleaner.
- Change the MSI sx lock to a mutex.  If we need to create new sources,
  drop the lock, create the required number of sources, then get the lock
  and try the allocation again.
2007-05-08 21:29:14 +00:00
jhb
ef27a04299 Revamp the MSI/MSI-X code a bit to achieve two main goals:
- Simplify the amount of work that has be done for each architecture by
  pushing more of the truly MI code down into the PCI bus driver.
- Don't bind MSI-X indicies to IRQs so that we can allow a driver to map
  multiple MSI-X messages into a single IRQ when handling a message
  shortage.

The changes include:
- Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus
  to calculate the address and data values for a given MSI/MSI-X IRQ.
  The x86 nexus drivers map this into a call to a new 'msi_map()' function
  in msi.c that does the mapping.
- Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index'
  parameter from PCIB_ALLOC_MSIX().  MD code no longer has any knowledge
  of the MSI-X index for a given MSI-X IRQ.
- The PCI bus driver now stores more MSI-X state in a child's ivars.
  Specifically, it now stores an array of IRQs (called "message vectors" in
  the code) that have associated address and data values, and a small
  virtual version of the MSI-X table that specifies the message vector
  that a given MSI-X table entry uses.  Sparse mappings are permitted in
  the virtual table.
- The PCI bus driver now configures the MSI and MSI-X address/data
  registers directly via custom bus_setup_intr() and bus_teardown_intr()
  methods.  pci_setup_intr() invokes PCIB_MAP_MSI() to determine the
  address and data values for a given message as needed.  The MD code
  no longer has to call back down into the PCI bus code to set these
  values from the nexus' bus_setup_intr() handler.
- The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD
  code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get
  new values of the address and data fields for a given IRQ.  The x86
  MSI code uses this when an MSI IRQ is moved to a different CPU, requiring
  a new value of the 'address' field.
- The x86 MSI psuedo-driver loses a lot of code, and in fact the separate
  MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver
  since the only remaining diff between the two is a substring in a
  bootverbose printf.
- The PCI bus driver will now restore MSI-X state (including programming
  entries in the MSI-X table) on device resume.
- The interface for pci_remap_msix() has changed.  Instead of accepting
  indices for the allocated vectors, it accepts a mini-virtual table
  (with a new length parameter).  This table is an array of u_ints, where
  each value specifies which allocated message vector to use for the
  corresponding MSI-X message.  A vector of 0 forces a message to not
  have an associated IRQ.  The device may choose to only use some of the
  IRQs assigned, in which case the unused IRQs must be at the "end" and
  will be released back to the system.  This allows a driver to use the
  same remap table for different shortage values.  For example, if a driver
  wants 4 messages, it can use the same remap table (which only uses the
  first two messages) for the cases when it only gets 2 or 3 messages and
  in the latter case the PCI bus will release the 3rd IRQ back to the
  system.

MFC after:	1 month
2007-05-02 17:50:36 +00:00
jhb
432a1d8db5 Change the x86 interrupt code to use FreeBSD CPU IDs (i.e. PCPU_GET(cpuid))
rather than local APIC IDs to keep track of CPUs which can handle
interrupts.
2007-03-06 17:16:47 +00:00
piso
6a2ffa86e5 o break newbus api: add a new argument of type driver_filter_t to
bus_setup_intr()

o add an int return code to all fast handlers

o retire INTR_FAST/IH_FAST

For more info: http://docs.freebsd.org/cgi/getmsg.cgi?fetch=465712+0+current/freebsd-current

Reviewed by: many
Approved by: re@
2007-02-23 12:19:07 +00:00
jhb
3624354c54 Expand the MSI/MSI-X API to address some deficiencies in the MSI-X support.
- First off, device drivers really do need to know if they are allocating
  MSI or MSI-X messages.  MSI requires allocating powerof2() messages for
  example where MSI-X does not.  To address this, split out the MSI-X
  support from pci_msi_count() and pci_alloc_msi() into new driver-visible
  functions pci_msix_count() and pci_alloc_msix().  As a result,
  pci_msi_count() now just returns a count of the max supported MSI
  messages for the device, and pci_alloc_msi() only tries to allocate MSI
  messages.  To get a count of the max supported MSI-X messages, use
  pci_msix_count().  To allocate MSI-X messages, use pci_alloc_msix().
  pci_release_msi() still handles both MSI and MSI-X messages, however.
  As a result of this change, drivers using the existing API will only
  use MSI messages and will no longer try to use MSI-X messages.
- Because MSI-X allows for each message to have its own data and address
  values (and thus does not require all of the messages to have their
  MD vectors allocated as a group), some devices allow for "sparse" use
  of MSI-X message slots.  For example, if a device supports 8 messages
  but the OS is only able to allocate 2 messages, the device may make the
  best use of 2 IRQs if it enables the messages at slots 1 and 4 rather
  than default of using the first N slots (or indicies) at 1 and 2.  To
  support this, add a new pci_remap_msix() function that a driver may call
  after a successful pci_alloc_msix() (but before allocating any of the
  SYS_RES_IRQ resources) to allow the allocated IRQ resources to be
  assigned to different message indices.  For example, from the earlier
  example, after pci_alloc_msix() returned a value of 2, the driver would
  call pci_remap_msix() passing in array of integers { 1, 4 } as the
  new message indices to use.  The rid's for the SYS_RES_IRQ resources
  will always match the message indices.  Thus, after the call to
  pci_remap_msix() the driver would be able to access the first message
  in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at
  SYS_RES_IRQ rid 4.  Note that the message slots/indices are 1-based
  rather than 0-based so that they will always correspond to the rid
  values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt).
  To support this API, a new PCIB_REMAP_MSIX() method was added to the
  pcib interface to change the message index for a single IRQ.

Tested by:	scottl
2007-01-22 21:48:44 +00:00
jhb
f74d404e39 Sort function prototypes. 2006-12-12 19:24:45 +00:00
jhb
fa70d01397 MD support for PCI Message Signalled Interrupts on amd64 and i386:
- Add a new apic_alloc_vectors() method to the local APIC support code
  to allocate N contiguous IDT vectors (aligned on a M >= N boundary).
  This function is used to allocate IDT vectors for a group of MSI
  messages.
- Add MSI and MSI-X PICs.  The PIC code here provides methods to manage
  edge-triggered MSI messages as x86 interrupt sources.  In addition to
  the PIC methods, msi.c also includes methods to allocate and release
  MSI and MSI-X messages.  For x86, we allow for up to 128 different
  MSI IRQs starting at IRQ 256 (IRQs 0-15 are reserved for ISA IRQs,
  16-254 for APIC PCI IRQs, and IRQ 255 is reserved).
- Add pcib_(alloc|release)_msi[x]() methods to the MD x86 PCI bridge
  drivers to bubble the request up to the nexus driver.
- Add pcib_(alloc|release)_msi[x]() methods to the x86 nexus drivers that
  ask the MSI PIC code to allocate resources and IDT vectors.

MFC after:	2 months
2006-11-13 22:23:34 +00:00
jhb
920b219fcf Change the x86 interrupt code to suspend/resume interrupt controllers
(PICs) rather than interrupt sources.  This allows interrupt controllers
with no interrupt pics (such as the 8259As when APIC is in use) to
participate in suspend/resume.
- Always register the 8259A PICs even if we don't use any of their pins.
- Explicitly reset the 8259As on resume on amd64 if 'device atpic' isn't
  included.
- Add a "dummy" PIC for the local APIC on the BSP to reset the local APIC
  on resume.  This gets suspend/resume working with APIC on UP systems.
  SMP still needs more work to bring the APs back to life.

The MFC after is tentative.

Tested by:	anholt (i386)
Submitted by:	Andrea Bittau <a.bittau at cs.ucl.ac.uk> (3)
MFC after:	1 week
2006-10-10 23:23:12 +00:00
jhb
1e61deec33 Oops, fix sign bug in #ifdef for value of INTRCNT_COUNT.
PR:		kern/99870
Submitted by:	jkim
MFC after:	3 days
2006-10-10 19:26:35 +00:00
jhb
3478c467ee Rework how we wire up interrupt sources to CPUs:
- Throw out all of the logical APIC ID stuff.  The Intel docs are somewhat
  ambiguous, but it seems that the "flat" cluster model we are currently
  using is only supported on Pentium and P6 family CPUs.  The other
  "hierarchy" cluster model that is supported on all Intel CPUs with
  local APICs is severely underdocumented.  For example, it's not clear
  if the OS needs to glean the topology of the APIC hierarchy from
  somewhere (neither ACPI nor MP Table include it) and setup the logical
  clusters based on the physical hierarchy or not.  Not only that, but on
  certain Intel chipsets, even though there were 4 CPUs in a logical
  cluster, all the interrupts were only sent to one CPU anyway.
- We now bind interrupts to individual CPUs using physical addressing via
  the local APIC IDs.  This code has also moved out of the ioapic PIC
  driver and into the common interrupt source code so that it can be
  shared with MSI interrupt sources since MSI is addressed to APICs the
  same way that I/O APIC pins are.
- Interrupt source classes grow a new method pic_assign_cpu() to bind an
  interrupt source to a specific local APIC ID.
- The SMP code now tells the interrupt code which CPUs are avaiable to
  handle interrupts in a simpler and more intuitive manner.  For one thing,
  it means we could now choose to not route interrupts to HT cores if we
  wanted to (this code is currently in place in fact, but under an #if 0
  for now).
- For now we simply do static round-robin of IRQs to CPUs when the first
  interrupt handler just as before, with the change that IRQs are now
  bound to individual CPUs rather than groups of up to 4 CPUs.
- Because the IRQ to CPU mapping has now been moved up a layer, it would
  be easier to manage this mapping from higher levels.  For example, we
  could allow drivers to specify a CPU affinity map for their interrupts,
  or we could allow a userland tool to bind IRQs to specific CPUs.

The MFC is tentative, but I want to see if this fixes problems some folks
had with UP APIC kernels on 6.0 on SMP machines (an SMP kernel would work
fine, but a UP APIC kernel (such as GENERIC in RELENG_6) would lose
interrupts).

MFC after:	1 week
2006-02-28 22:24:55 +00:00
jhb
c77d4150b7 Change the i386 code to pass the interrupt vector as a separate argument
rather than embedding it in the intrframe as if_vec.  This reduces diffs
with amd64 somewhat.
- Remove cf_vec from clockframe (it wasn't used anyway) and stop pushing
  dummy vector arguments for ipi_bitmap_handler() and lapic_handle_timer()
  since clockframe == trapframe now.
- Fix ddb to handle stack traces across interrupt entry points that just
  have a trapframe on their stack and not a trapframe + vector.
- Change intr_execute_handlers() to take a trapframe rather than an
  intrframe pointer.
- Change lapic_handle_intr() and atpic_handle_intr() to take a vector and
  trapframe rather than an intrframe.
- GC struct intrframe now that nothing uses it anymore.
- GC CLOCK_TO_TRAPFRAME() and INTR_TO_TRAPFRAME().

Reviewed by:	bde
Requested by:	peter
2005-12-05 22:39:09 +00:00
jhb
830d2103fb Change the x86 code to allocate IDT vectors on-demand when an interrupt
source is first enabled similar to how intr_event's now allocate ithreads
on-demand.  Previously, we would map IDT vectors 1:1 to IRQs.  Since we
only have 191 available IDT vectors for I/O interrupts, this limited us
to only supporting IRQs 0-190 corresponding to the first 190 I/O APIC
intpins.  On many machines, however, each PCI-X bus has its own APIC even
though it only has 1 or 2 devices, thus, we were reserving between 24 and
32 IRQs just for 1 or 2 devices and thus 24 or 32 IDT vectors.  With this
change, a machine with 100 IRQs but only 5 in use will only use up 5 IDT
vectors.  Also, this change provides an API (apic_alloc_vector() and
apic_free_vector()) that will allow a future MSI interrupt source driver to
request IDT vectors for use by MSI interrupts on x86 machines.

Tested on:	amd64, i386
2005-11-02 20:11:47 +00:00
jhb
e20e5c07ce Reorganize the interrupt handling code a bit to make a few things cleaner
and increase flexibility to allow various different approaches to be tried
in the future.
- Split struct ithd up into two pieces.  struct intr_event holds the list
  of interrupt handlers associated with interrupt sources.
  struct intr_thread contains the data relative to an interrupt thread.
  Currently we still provide a 1:1 relationship of events to threads
  with the exception that events only have an associated thread if there
  is at least one threaded interrupt handler attached to the event.  This
  means that on x86 we no longer have 4 bazillion interrupt threads with
  no handlers.  It also means that interrupt events with only INTR_FAST
  handlers no longer have an associated thread either.
- Renamed struct intrhand to struct intr_handler to follow the struct
  intr_foo naming convention.  This did require renaming the powerpc
  MD struct intr_handler to struct ppc_intr_handler.
- INTR_FAST no longer implies INTR_EXCL on all architectures except for
  powerpc.  This means that multiple INTR_FAST handlers can attach to the
  same interrupt and that INTR_FAST and non-INTR_FAST handlers can attach
  to the same interrupt.  Sharing INTR_FAST handlers may not always be
  desirable, but having sio(4) and uhci(4) fight over an IRQ isn't fun
  either.  Drivers can always still use INTR_EXCL to ask for an interrupt
  exclusively.  The way this sharing works is that when an interrupt
  comes in, all the INTR_FAST handlers are executed first, and if any
  threaded handlers exist, the interrupt thread is scheduled afterwards.
  This type of layout also makes it possible to investigate using interrupt
  filters ala OS X where the filter determines whether or not its companion
  threaded handler should run.
- Aside from the INTR_FAST changes above, the impact on MD interrupt code
  is mostly just 's/ithread/intr_event/'.
- A new MI ddb command 'show intrs' walks the list of interrupt events
  dumping their state.  It also has a '/v' verbose switch which dumps
  info about all of the handlers attached to each event.
- We currently don't destroy an interrupt thread when the last threaded
  handler is removed because it would suck for things like ppbus(8)'s
  braindead behavior.  The code is present, though, it is just under
  #if 0 for now.
- Move the code to actually execute the threaded handlers for an interrrupt
  event into a separate function so that ithread_loop() becomes more
  readable.  Previously this code was all in the middle of ithread_loop()
  and indented halfway across the screen.
- Made struct intr_thread private to kern_intr.c and replaced td_ithd
  with a thread private flag TDP_ITHREAD.
- In statclock, check curthread against idlethread directly rather than
  curthread's proc against idlethread's proc. (Not really related to intr
  changes)

Tested on:	alpha, amd64, i386, sparc64
Tested on:	arm, ia64 (older version of patch by cognet and marcel)
2005-10-25 19:48:48 +00:00
jhb
5a3bc2892e Tweak the ELCR support slightly. Explicitly probe the ELCR during boot
instead of burying that in the atpic(4) code as atpic(4) is not the only
user of elcr(4).  Change the elcr(4) code to export a global elcr_found
variable that other code can check to see if a valid ELCR was found.

MFC after:	1 month
2005-01-18 20:24:47 +00:00
jhb
b74bf1946f Add a simple 'intrcnt_add' function that other MD code can use to add a
single named counter to the interrupt counts without having to fake up an
entire interrupt source.
2004-12-23 20:34:18 +00:00
scottl
fb7f90d7ec Optimize intr_execute_handlers() by combining the pic_disable_source() and
pic_eoi_source() into one call.  This halves the number of spinlock operations
and indirect function calls in the normal case of handling a normal (ithread)
interrupt.  Optimize the atpic and ioapic drivers to use inlines where
appropriate in supporting the intr_execute_handlers() change.

This knocks 900ns, or roughly 1350 cycles, off of the time spent servicing an
interrupt in the common case on my 1.5GHz P4 uniprocessor system.  SMP systems
likely won't see as much of a gain due to the ioapic being more efficient than
the atpic.  I'll investigate porting this to amd64 soon.

Reviewed by:	jhb
2004-08-02 15:31:10 +00:00
jhb
415131cd6d - Add a new pic method pic_config_intr() to set the trigger mode and
polarity for a specified IRQ.  The intr_config_intr() function wraps
  this pic method hiding the IRQ to interrupt source lookup.
- Add a config_intr() method to the atpic(4) driver that reconfigures
  the interrupt using the ELCR if possible and returns an error otherwise.
- Add a config_intr() method to the apic(4) driver that just logs any
  requests that would change the existing programming under bootverbose.
  Currently, the only changes the apic(4) driver receives are due to bugs
  in the acpi(4) driver and its handling of link devices, hence the reason
  for such requests currently being ignored.
- Have the nexus(4) driver on i386 implement the bus_config_intr() function
  by calling intr_config_intr().
2004-05-04 21:02:56 +00:00
jhb
9f40cdcc06 Add a simple mini-driver for the ELCR register. Originally, the ELCR
register controlled the trigger mode and polarity of EISA interrupts.
However, it appears that most (all?) PCI systems use the ELCR to manage
the trigger mode and polarity of ISA interrupts as well since ISA IRQs used
to route PCI interrupts need to be level triggered with active low
polarity.  We check to see if the ELCR exists by sanity checking the value
we get back ensuring that IRQS 0 (8254), 1 (atkbd), 2 (the link from the
slave PIC), and 8 (RTC) are all clear indicating edge trigger and active
high polarity.

This mini-driver will be used by the atpic driver to manage the trigger and
polarity of ISA IRQs.  Also, the mptable parsing code will use this mini
driver rather than examining the ELCR directly.
2004-05-04 20:07:46 +00:00
jhb
97b2405ad5 Shuffle the APIC interrupt vectors around a bit:
- Move the IPI and local APIC interrupt vectors up into the 0xf0 - 0xff
  range.  The pmap lazyfix IPI was reordered down next to the TLB
  shootdowns to avoid conflicting with the spurious interrupt vector.
- Move the base of APIC interrupts up 16 so that the first 16 APIC
  interrupts do not overlap the vectors used by the ATPIC.
- Remove bogus interrupt vector reservations for LINT[01].
- Now that 0xc0 - 0xef are available, use them for device interrupts.
  This increases the number of APIC device interrupts to 191.
- Increase the system-wide number of global interrupts to 191 to catch up
  to more APIC interrupts.

Requested by:	peter (2)
2003-11-14 19:10:13 +00:00
jhb
d85aa501e2 New device interrupt code. This defines an interrupt source abstraction
that provides methods via a PIC driver to do things like mask a source,
unmask a source, enable it when the first interrupt handler is added, etc.
The interrupt code provides a table of interrupt sources indexed by IRQ
numbers, or vectors.  These vectors are what new-bus uses for its IRQ
resources and for bus_setup_intr()/bus_teardown_intr().  The interrupt
code then maps that vector a given interrupt source object.  When an
interrupt comes in, the low-level interrupt code looks up the interrupt
source for the source that triggered the interrupt and hands it off to
this code to execute the appropriate handlers.

By having an interrupt source abstraction, this allows us to have different
types of interrupt source providers within the shared IRQ address space.
For example, IRQ 0 may map to pin 0 of the master 8259A PIC, IRQs 1
through 60 may map to pins on various I/O APICs, and IRQs 120 through
128 may map to MSI interrupts for various PCI devices.
2003-11-03 21:25:52 +00:00