flags field. Updates to the atomic flags are performed using the atomic
ops on the containing word, do not require any vm lock to be held, and
are non-blocking. The vm_page_aflag_set(9) and vm_page_aflag_clear(9)
functions are provided to modify afalgs.
Document the changes to flags field to only require the page lock.
Introduce vm_page_reference(9) function to provide a stable KPI and
KBI for filesystems like tmpfs and zfs which need to mark a page as
referenced.
Reviewed by: alc, attilio
Tested by: marius, flo (sparc64); andreast (powerpc, powerpc64)
Approved by: re (bz)
won't happen before 9.0. This commit adds "#ifdef RACCT" around all the
"PROC_LOCK(p); racct_whatever(p, ...); PROC_UNLOCK(p)" instances, in order
to avoid useless locking/unlocking in kernels built without "options RACCT".
- Hold the proc lock while changing the state from PRS_NEW to PRS_NORMAL
in fork to honor the locking requirements. While here, expand the scope
of the PROC_LOCK() on the new process (p2) to avoid some LORs. Previously
the code was locking the new child process (p2) after it had locked the
parent process (p1). However, when locking two processes, the safe order
is to lock the child first, then the parent.
- Fix various places that were checking p_state against PRS_NEW without
having the process locked to use PROC_LOCK(). Every place was already
locking the process, just after the PRS_NEW check.
- Remove or reduce the use of PROC_SLOCK() for places that were checking
p_state against PRS_NEW. The PROC_LOCK() alone is sufficient for reading
the current state.
- Reorder fill_kinfo_proc() slightly so it only acquires PROC_SLOCK() once.
MFC after: 1 week
which are not yet fully initialized (i.e. ones with p_state == PRS_NEW).
Without it, we could panic in _thread_lock_flags().
Note that there may be other instances of FOREACH_PROC_IN_SYSTEM() that
require similar fix.
Reported by: pho, keramida
Discussed with: kib
hold this lock until the end of the function.
With the aforementioned change to vm_pageout_clean(), page locks don't need
to support recursive (MTX_RECURSE) or duplicate (MTX_DUPOK) acquisitions.
Reviewed by: kib
backing storage. Such pages might be then reused, racing with the
assert in vm_object_page_collect_flush() that verified that dirty
pages from the run (most likely, pages with VM_PAGER_AGAIN status) are
write-protected still. In fact, the page indexes for the pages that
were removed from the object page list should be ignored by
vm_object_page_clean().
Return the length of successfully written run from vm_pageout_flush(),
that is, the count of pages between requested page and first page
after requested with status VM_PAGER_AGAIN. Supply the requested page
index in the array to vm_pageout_flush(). Use the returned run length
to forward the index of next page to clean in vm_object_page_clean().
Reported by: avg
Reviewed by: alc
MFC after: 1 week
in a range must be checked when calling pmap_remove(). Calling
pmap_remove() from vm_pageout_map_deactivate_pages() with the entire range
of the map could result in attempting to demap an extraordinary number
of pages (> 10^15), so iterate through each map entry and unmap each of
them individually.
MFC after: 6 weeks
Previously, the caller unlocked the page, and vm_pageout_clean()
immediately reacquired the page lock. Also, assert rather than test
that the page is neither busy nor held. Since vm_pageout_clean() is
called with the object and page locked, the page can't have changed
state since the caller verified that the page is neither busy nor
held.
vm_pageout_clean(). When iterating over a range of pages, these functions
can be cheaper than vm_page_lookup() because their implementation takes
advantage of the vm_object's memq being ordered.
Reviewed by: kib@
MFC after: 3 weeks
and vm_pageout_page_stats(). These checks were recently introduced by
the first page locking commit, r207410, but they are not needed. At
the same time, eliminate some redundant accesses to the page's object
field. (These accesses should have neen eliminated by r207410.)
Make the assertion in vm_page_flag_set() stricter. Specifically, only
managed pages should have PG_WRITEABLE set.
Add a comment documenting an assertion to vm_page_flag_clear().
It has long been the case that fictitious pages have their wire count
permanently set to one. Add comments to vm_page_wire() and
vm_page_unwire() documenting this. Add assertions to these functions
as well.
Update the comment describing vm_page_unwire(). Much of the old
comment had little to do with vm_page_unwire(), but a lot to do with
_vm_page_deactivate(). Move relevant parts of the old comment to
_vm_page_deactivate().
Only pages that belong to an object can be paged out. Therefore, it
is pointless for vm_page_unwire() to acquire the page queues lock and
enqueue such pages in one of the paging queues. Generally speaking,
such pages are immediately freed after the call to vm_page_unwire().
Previously, it was the call to vm_page_free() that reacquired the page
queues lock and removed these pages from the paging queues. Now, we
will never acquire the page queues lock for this case. (It is also
worth noting that since both vm_page_unwire() and vm_page_free()
occurred with the page locked, the page daemon never saw the page with
its object field set to NULL.)
Change the panic with vm_page_unwire() to provide a more precise message.
Reviewed by: kib@
PG_REFERENCED changes in vm_pageout_object_deactivate_pages().
Simplify this function's inner loop using TAILQ_FOREACH(), and shorten
some of its overly long lines. Update a stale comment.
Assert that PG_REFERENCED may be cleared only if the object containing
the page is locked. Add a comment documenting this.
Assert that a caller to vm_page_requeue() holds the page queues lock,
and assert that the page is on a page queue.
Push down the page queues lock into pmap_ts_referenced() and
pmap_page_exists_quick(). (As of now, there are no longer any pmap
functions that expect to be called with the page queues lock held.)
Neither pmap_ts_referenced() nor pmap_page_exists_quick() should ever
be passed an unmanaged page. Assert this rather than returning "0"
and "FALSE" respectively.
ARM:
Simplify pmap_page_exists_quick() by switching to TAILQ_FOREACH().
Push down the page queues lock inside of pmap_clearbit(), simplifying
pmap_clear_modify(), pmap_clear_reference(), and pmap_remove_write().
Additionally, this allows for avoiding the acquisition of the page
queues lock in some cases.
PowerPC/AIM:
moea*_page_exits_quick() and moea*_page_wired_mappings() will never be
called before pmap initialization is complete. Therefore, the check
for moea_initialized can be eliminated.
Push down the page queues lock inside of moea*_clear_bit(),
simplifying moea*_clear_modify() and moea*_clear_reference().
The last parameter to moea*_clear_bit() is never used. Eliminate it.
PowerPC/BookE:
Simplify mmu_booke_page_exists_quick()'s control flow.
Reviewed by: kib@
independent code. Move this code into mincore(), and eliminate the
page queues lock from pmap_mincore().
Push down the page queues lock into pmap_clear_modify(),
pmap_clear_reference(), and pmap_is_modified(). Assert that these
functions are never passed an unmanaged page.
Eliminate an inaccurate comment from powerpc/powerpc/mmu_if.m:
Contrary to what the comment says, pmap_mincore() is not simply an
optimization. Without a complete pmap_mincore() implementation,
mincore() cannot return either MINCORE_MODIFIED or MINCORE_REFERENCED
because only the pmap can provide this information.
Eliminate the page queues lock from vfs_setdirty_locked_object(),
vm_pageout_clean(), vm_object_page_collect_flush(), and
vm_object_page_clean(). Generally speaking, these are all accesses
to the page's dirty field, which are synchronized by the containing
vm object's lock.
Reduce the scope of the page queues lock in vm_object_madvise() and
vm_page_dontneed().
Reviewed by: kib (an earlier version)
vm_page_try_to_free(). Consequently, push down the page queues lock into
pmap_enter_quick(), pmap_page_wired_mapped(), pmap_remove_all(), and
pmap_remove_write().
Push down the page queues lock into Xen's pmap_page_is_mapped(). (I
overlooked the Xen pmap in r207702.)
Switch to a per-processor counter for the total number of pages cached.
vm_pageout_fallback_object_lock(), to obtain the page lock
while having page queue lock locked, and still maintain the
page position in a queue.
Use the helper to lock the page in the pageout daemon and contig launder
iterators instead of skipping the page if its lock is contested.
Skipping locked pages easily causes pagedaemon or launder to not make a
progress with page cleaning.
Proposed and reviewed by: alc
architecture from page queue lock to a hashed array of page locks
(based on a patch by Jeff Roberson), I've implemented page lock
support in the MI code and have only moved vm_page's hold_count
out from under page queue mutex to page lock. This changes
pmap_extract_and_hold on all pmaps.
Supported by: Bitgravity Inc.
Discussed with: alc, jeffr, and kib
than checking each page for PG_UNMANAGED, check the vm object's type.
Only OBJT_PHYS can have unmanaged pages. Eliminate a pointless counter.
The vm object is locked, that lock is never released by the inner loop,
and the set of pages contained by the vm object is not changed by the
inner loop. Therefore, the counter serves no purpose.
killed by OOM. When killed process waits for a page allocation, try to
satisfy the request as fast as possible.
This removes the often encountered deadlock, where OOM continously
selects the same victim process, that sleeps uninterruptibly waiting
for a page. The killed process may still sleep if page cannot be
obtained immediately, but testing has shown that system has much
higher chance to survive in OOM situation with the patch.
In collaboration with: pho
Reviewed by: alc
MFC after: 4 weeks
reference count, and decrements it on dereference. If referenced object
is deallocated, object type is reset to OBJT_DEAD. Consequently, all
vnode references that are owned by object references are never released.
vunref() the vnode in vm object deallocation code for OBJT_VNODE
appropriate number of times to prevent leak.
Add an assertion to the vm_pageout() to make sure that we never get
reference on the vnode but then do not execute code to release it.
In collaboration with: pho
Reviewed by: alc
MFC after: 3 weeks
a device pager (OBJT_DEVICE) object in that it uses fictitious pages to
provide aliases to other memory addresses. The primary difference is that
it uses an sglist(9) to determine the physical addresses for a given offset
into the object instead of invoking the d_mmap() method in a device driver.
Reviewed by: alc
Approved by: re (kensmith)
MFC after: 2 weeks
valid mask. Consequently, there is no need to perform a bit-wise and of
the page's dirty and valid masks in order to determine which parts of a
page are dirty and valid.
Eliminate an unnecessary #include.
rather than unconditionally making partially dirty pages fully dirty, only
make partially dirty pages fully dirty if the pmap says that the page has
been modified.
(This change is also a small optimization. It eliminate an unnecessary call
to pmap_is_modified() on pages that are mapped read only.)
Suggested by: tegge
the vmspace of the examined process instead of directly accessing its
vmspace, that may change. Also, as an optimization, check for P_INEXEC
flag before examining the process.
Reported and tested by: pho (previous version)
Reviewed by: alc
MFC after: 3 week
into the separate function vm_pageout_oom(). Supply a parameter for
vm_pageout_oom() describing a reason for the call.
Call vm_pageout_oom() from the swp_pager_meta_build() when swap zone
is exhausted.
Reviewed by: alc
Tested by: pho, jhb
MFC after: 2 weeks
requiring the per-process spinlock to only requiring the process lock.
- Reflect these changes in the proc.h documentation and consumers throughout
the kernel. This is a substantial reduction in locking cost for these
fields and was made possible by recent changes to threading support.
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
vm_pageout_fallback_object_lock() in vm_contig_launder_page() to better
handle a lock-ordering problem. Consequently, trylock's failure on the
page's containing object no longer implies that the page cannot be
laundered.
MFC after: 6 weeks
ways:
(1) Cached pages are no longer kept in the object's resident page
splay tree and memq. Instead, they are kept in a separate per-object
splay tree of cached pages. However, access to this new per-object
splay tree is synchronized by the _free_ page queues lock, not to be
confused with the heavily contended page queues lock. Consequently, a
cached page can be reclaimed by vm_page_alloc(9) without acquiring the
object's lock or the page queues lock.
This solves a problem independently reported by tegge@ and Isilon.
Specifically, they observed the page daemon consuming a great deal of
CPU time because of pages bouncing back and forth between the cache
queue (PQ_CACHE) and the inactive queue (PQ_INACTIVE). The source of
this problem turned out to be a deadlock avoidance strategy employed
when selecting a cached page to reclaim in vm_page_select_cache().
However, the root cause was really that reclaiming a cached page
required the acquisition of an object lock while the page queues lock
was already held. Thus, this change addresses the problem at its
root, by eliminating the need to acquire the object's lock.
Moreover, keeping cached pages in the object's primary splay tree and
memq was, in effect, optimizing for the uncommon case. Cached pages
are reclaimed far, far more often than they are reactivated. Instead,
this change makes reclamation cheaper, especially in terms of
synchronization overhead, and reactivation more expensive, because
reactivated pages will have to be reentered into the object's primary
splay tree and memq.
(2) Cached pages are now stored alongside free pages in the physical
memory allocator's buddy queues, increasing the likelihood that large
allocations of contiguous physical memory (i.e., superpages) will
succeed.
Finally, as a result of this change long-standing restrictions on when
and where a cached page can be reclaimed and returned by
vm_page_alloc(9) are eliminated. Specifically, calls to
vm_page_alloc(9) specifying VM_ALLOC_INTERRUPT can now reclaim and
return a formerly cached page. Consequently, a call to malloc(9)
specifying M_NOWAIT is less likely to fail.
Discussed with: many over the course of the summer, including jeff@,
Justin Husted @ Isilon, peter@, tegge@
Tested by: an earlier version by kris@
Approved by: re (kensmith)